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Abstract. Model-based testing has been proposed as a technique to automati-
cally verify that a system conforms to its specification. A popular approach is to
use a model-checker to produce a set of test cases by formulating the test gen-
eration problem as a reachability problem. To guide the selection of test cases,
a coverage criterion is often used. A coverage criterion can be seen as a set of
items to be covered, called coverage items. We propose an on-the-fly algorithm
that generates a test suite that covers all feasible coverage items. The algorithm
returns a set of traces that includes a path fulfilling each item, without including
redundant paths. The reachability algorithm explores a state only if it might in-
crease the total coverage. The decision is global in the sense that it does not only
regard each individual local search branch in isolation, but the total coverage in
all branches together. For simpler coverage criteria as location of edge coverage,
this implies that each model state is never explored twice.
The algorithm presented in this paper has been implemented in the test generation
tool UPPAAL COXER. We present encouraging results from applying the tool to
a set of experiments and in an industrial sized case study.

1 Introduction

The bulk of verification efforts in software industry today is performed using various
testing techniques. In conformance testing, the behavior of an implemented system, or
system part, is checked to agree with its specification. This is typically done in a con-
trolled environment where the system is executed and stimulated with input according
to a test specification, and the responses of the system are checked to conform to its
specification. To reduce the costs of this process, the execution of software testing is
often automated, whereas the production of test suites are mostly done by hand. Tech-
niques to automatically generate test suites, or to combine generation and execution,
are emerging and getting more mature [31,9,28,19].

In this paper, we study techniques for model-based conformance testing in a set-
ting where the test suite is automatically generated from a model before the actual
testing takes place — sometimes referred to as offline testing in contrast to online test-
ing [23]. In order to guide the generation of tests and to describe how thorough the tests
should be, we select tests following a particular coverage criterion, such as coverage of
control states or edges in a model. Many coverage criteria have been suggested in the



literature [27,6,12] ranging from simple structural criteria to complex data-flow criteria
characterized as path properties. Many algorithms for generating test suites following
a given coverage criterion have also been proposed [29,22,18,13], including algorithms
producing test suites optimal in the number of test cases, in the total length of the test
suite, or in the total time required to execute the test suite.

In this paper, we study test suite generation algorithms inspired by reachability anal-
ysis techniques used in model-checkers such as SPIN [16] and UPPAAL [24] — an
approach shared with, e.g., [19]. Such algorithms essentially perform reachability anal-
ysis to generate and explore the state space of a model in order to find a set of paths that
follows a given coverage criterion, which can be interpreted as a test suite. To generate
a path, a coverage criterion can be regarded as a set of independent coverage tasks [11]
or coverage items [4] to be covered. Reachability analysis is applied to generate a set of
paths for all reachable coverage items. We review this technique and suggest a number
of modifications to improve the efficiency of the analysis.

The main contribution of this paper is a novel on-the-fly algorithm for generating
test suites by reachability analysis. It can be seen as a trade-off between performance
of the algorithm, in terms of time and space requirements, and generating a test suite
with reasonable characteristics. The result is an algorithm that in each step uses global
information about the state space generated so far to guide the further analysis and
to speed up termination. The generated test suite is reasonable in the sense that each
coverage item is reached by a path from the initial state to the first found state in which
it is satisfied.

During the state-space exploration, the algorithm stores a set of paths to the cover-
age items satisfied so far. This information is used to prune search branches that will
not be able to contribute to the total coverage — a technique that improves the perfor-
mance of the algorithm. In experiments we justify this statement by presenting how the
algorithm, implemented in the UPPAAL COXER tool 3, performs on a set of examples
from the literature.

The rest of the paper is organized as follows: in Section 2 we describe the model
used in this paper, and review techniques for test case generation based on reachability
analysis. In Section 3 we describe a reachability analysis algorithm for test case gener-
ation. In Section 4 we present a novel algorithm for test case generation that uses global
information about the generated state-space to determine termination and pruning. In
Section 5 we describe the results of experiments comparing the different techniques.
The paper ends with conclusions in Section 6.

Related Work: Our work is mostly related to test case generation approaches inspired
by model-checking techniques, including [5,13,23,19,17,28].

In [28], Nielsen and Skou generate test cases that cover symbolic states of Event
Recording Automata. Like our work, the proposed state-space exploration algorithm is
inspired by model-checking, however the work is focused on timed system and uses a
fixed coverage criterion.

3 See the web page http://user.it.uu.se/˜hessel/CoVer/ for more information
about the UPPAAL COXER tool.



In [19], Hong et al show how several flow-based coverage criteria can be expressed
in temporal logic and how the test case generation problem can be solved by model-
checking. Hong and Ural [17] continue this work and study how coverage items can
subsume each other, and propose a solution to the problem. These works use an existing
CTL model-checker to solve the test case generation problem, whereas we propose a
specialized algorithm for test case generation.

Our work is also related to directed model-checking techniques, where state-space
exploration is guided by the property to be checked. In [8], the authors use a bitstate
hashing based iterated search refinement method to guide a model-checker to generate
test cases. This method can be seen as a meta algorithm using an existing model-checker
iteratively. Thus the actual model-checking algorithms is not refined for test case gen-
eration.

2 Preliminaries

We will present ideas and algorithms for test case generation applicable to several
automata based models, such as finite state machines, extended finite state machines
(EFSM) as, e.g., SDL [20], or timed automata [1]. Throughout this paper, we shall
present our results using the model of communicating EFSMs.

2.1 The Model

An EFSM F over actions Act is a tuple 〈L, l0, V, E〉, where L is a set of locations,
l0 ∈ L the initial location, V is a finite set of variables with finite value domains, and
E is a set of edges. An edge is of the form 〈l, g, α, u, l′〉 ∈ E, where l ∈ L is the
source location and l′ ∈ L the destination location, g is a guard (a predicate) over V ,
α ∈ Act an action, and u is an update in the form of an assignment of variables in V to
expressions over V .

A state of an EFSM is a tuple 〈l, σ〉 where l ∈ L and σ is a mapping from V to
values. The initial state is 〈l0, σ0〉 where σ0 is the initial mapping. A transition is of the
form 〈l, σ〉 α−→ 〈l′, σ′〉 and is possible if there is an edge 〈l, g, α, u, l′〉 ∈ E where the
g is satisfied for the valuation σ, the result of updating σ according to u is σ′, and α is
an action.

A network of communicating EFSMs (CEFSM) over Act is a parallel composition
of a finite set of EFSMs F1 . . . , Fn for a given synchronization function. A state in
the network is a tuple of the form 〈〈l1, σ1〉, . . . , 〈ln, σn〉〉, where 〈li, σi〉 is a state of
Fi. We assume a hand-shaking synchronization function similar to that of CCS [26].
A transition of a CEFSM is then either (i) an internal transition of one EFSM, i.e.,
〈〈l1, σ1〉, ...〈lk, σk〉, ..., 〈ln, σn〉〉 τÃ 〈〈l1, σ1〉, ..., 〈l′k, σ′k〉, ..., 〈ln, σn〉〉 if 〈lk, σk〉 τ−→
〈l′k, σ′k〉 or (ii) synchronization of EFSMs, i.e., 〈〈l1, σ1〉, ..., 〈lk, σk〉, ..., 〈lm, σm〉, ...,
〈ln, σn〉〉 αÃ 〈〈l1, σ1〉, ..., 〈l′k, σ′k〉, ..., 〈l′mσ′m〉, ..., 〈ln, σn〉〉 if 〈lk, σk〉 α?−→ 〈l′k, σ′k〉, 〈lm,

σm〉 α!−→ 〈l′m, σ′m〉, and α? and α! are complementary synchronization actions.
Wherever it is clear from the context, we will use term model state denoted s to

refer to a state of a CEFSM and the term model transitions denoted s
αÃ s′ or t for a

CEFSM transition.



2.2 Test Case Generation

We will focus the presentation on generating test suites with a certain coverage in a
CEFSM. Coverage criteria are often used by testing engineers to specify how thorough
a test suite should test a system under test. Examples of coverage criteria used in model-
based testing include structural criteria such as location or edge coverage, data-flow
properties such as definition-use pair coverage, and semantic coverage on, e.g., states
of an EFSM or the time regions of a timed automata [28,30]. A coverage criterion
typically consists of a list of items to be covered or reached. We shall call those items
coverage items, and use C to denote a set of coverage items, C0 the initial C, and |C|
to denote the size of C.

If the coverage criterion stipulates a path property of the kind used in, e.g., data flow
criteria as definition-use pairs, we need to handle information about partially satisfied
coverage items. We use the definition-use pair coverage criterion [10] to illustrate the
concept. It should cover all paths where a given variable x is first defined in an EFSM
edge ed active in a transition td, and later used in (usually) another EFSM edge eu active
in a transition tu, without any redefinitions of x along the path from td to tu. We shall
store such partial coverage item, i.e., that x was defined on the EFSM edge ed active in
td, in a set denoted A.

In the algorithms, we shall extend the CEFSM state s to (s, C,A) or (s, C) when A
is not needed. We further extend the model transition relation to transitions of the form
(s,A, C) t⇒c (s′, A′, C ′) where t is a model transition s

αÃ s′, C ′ and A′ are the result
of updating C and A according to the coverage achieved in transition s

αÃ s′. For a
detailed description of how A′ and C ′ are updated, see e.g, [14].

We shall use traces to represent test cases generated from models. We use ε to denote
the empty trace, and ω.t to denote the trace ω extended with transition t. Further, we
use |ω| to denote the length of ω, defined as |ε| = 0 and |ω.t| = |ω|+ 1.

3 A Model Checking Approach to Test Suite Generation

3.1 A Local Algorithm

The problem of generating a test suite for a given coverage criteria by reachability
analysis has been studied in many settings in the literature, see e.g., [25,19,13,4]. The
authors of this paper suggest an algorithm for minimal test suite generation from models
of real-time systems described as networks of timed automata in [13] and for untimed
systems modeled as extended finite state machines in [4]. A version of these algorithms
is shown in Figure 1, but modified so that it returns a shortest path (in the number of
steps) with maximum coverage, if the algorithm is executed in a breadth-first manner.

The algorithm is essentially an ordinary reachability analysis algorithm that uses
two data structures WAIT and PASS to hold states waiting to be examined and states
already examined, respectively. In addition, the global integer variable max is used
to (invariantly) store the maximum coverage witnessed so far, and the variable ωmax

stores a path reaching a state with maximum coverage. Initially PASS is empty and
WAIT holds the initial combined state of the form (s0, C0, ε), where s0 is the initial
state of the model, C0 is the coverage of s0, and ε is the empty path.



(01) PASS:= ∅ ; WAIT:= {(s0, C0, ε)} ; ωmax := ε ; max := |C0|
(02) while WAIT 6= ∅ do
(03) select (s, C, ω) from WAIT; add (s, C, ω) to PASS

(04) for all (s′, C′, ω.t) : (s, C, ω)
t⇒c (s′, C′, ω.t) do

(05) if |C′| > max then
(06) ωmax := ω.t ; max := |C′|
(07) if ¬∃(si, Ci, ωi) : (si, Ci, ωi) ∈ PASS ∪ WAIT ∧ si = s′ ∧ C′ = Ci then
(08) add (s′, C′, ω.t) to WAIT

(09) od
(10) od
(11) return ωmax

Fig. 1. A reachability analysis algorithm for test suite generation.

The lines (03) to (08) are repeated until WAIT is empty. Alternatively, if the
maximal number of coverage items is known on beforehand, the loop can terminate
when the coverage is reached. At line (03) a state is taken from WAIT, and at line
(04) the successors of the state are generated. At line (05) and (06) a new path is
saved and a new maximum coverage is saved if the current successor covers more items
than the previous maxima. The successor state (s′, C ′, ω.t) is put on WAIT if there
is no state with the same model state and the same set of covered items, i.e., no state
(si, Ci, ωi) with si = s′ and Ci = C ′ can be found in WAIT nor PASS.

It can be shown (see e.g., [13,4]) that the algorithm of Figure 1 returns a shortest
path with maximum coverage if the select in line (03) is done so that the algorithm
explores the state space in breadth-first order.

Resets: Note that the algorithm of Figure 1 may return a trace ωmax that does not
include all feasible coverage items. This can happen if there are two states si and sj

in the state space of the model, such that si cannot reach sj or the other way around.
We can avoid this problem by adding a state (s0, C, ω.reset) to every successor set at
line (04), where reset is a distinct symbol representing that the model restarts from
its initial state. This guarantees that the algorithm in Figure 1 will always return a path
with all feasible coverage.

Coverage subsumption: A first improvement of the algorithm, described in [14] and
in analogy with the inclusion abstraction described in [7], is to change line (07) so
that instead of requiring equality of the coverage items Ci = C ′, inclusion of coverage
items is used, i.e., C ′ ⊆ Ci. The algorithm will now prune an extended state (and thus
the part of the state space it may reach) if there exists an extended state with the same
model state and a (non-strict) superset of its coverage.

It is also possible to further improve the algorithm in the dual case, i.e., if a state
(s′, C ′, ω′) is put on WAIT, such that states (si, Ci, ωi) exist in WAIT or PASS with s′ =
si and C ′ ⊃ Ci. In this case, all states (si, Ci, ωi) can be removed from WAIT and PASS.
Note that, as a consequence some states put on WAIT will never be further explored.
Instead subsuming states will be explored. This in turn may change the order in which



states are searched. The same technique has successfully been used to speed up model-
checking tools such as UPPAAL [2]. The result is an algorithm that explores fewer states,
but ordinary breadth-first search is no longer guaranteed to produce a shortest trace.

3.2 Partial Coverage

The algorithm in Figure 1 is applicable to coverage items (i.e., criteria) that can be deter-
mined locally in a single model transition, such as the location or edge coverage criteria.
If the coverage criterion stipulates a path property of the kind used in e.g, data-flow cri-
teria as definition-use pairs, the algorithm must be adjusted to handle information about
partial coverage items.

Algorithms inspired by model-checking for this class of coverage criteria have been
proposed in, e.g., [13,14,4,19]. To modify the algorithm of Figure 1 amounts to storing
the partial coverage items in the structure C, together with the ordinary coverage items,
and modify the behavior of the operator |C| (used at line (06)) so that partial cover-
age items are not considered. That is, partial coverage is represented and stored in the
same way as ordinary coverage, but they are not considered when the number of (fully
satisfied) coverage items is computed.

We also note that the coverage subsumption discussed above is not affected by the
existence of partial coverage items in C. The reset must also be done on the partial
coverage items, i.e., (s0, A0, C, ω.reset) is added at successor generation.

4 A Global Algorithm for Test Suite Generation

A well-known problem with algorithms like the one described in the previous section is
the time consumed to explore the state space, and the space required to represent WAIT
and PASS. The algorithm in Figure 1 explores states of the form (s, C, ω), resulting
in a state space with size defined by the number of model states s in product with the
number of possible coverage sets C (the trace ω does not influence the number of states
in the state space).

In this section, we describe algorithms that avoid exploring all states of the form
(s, C, ω) and still generates a reasonable test suite. The idea is to collect and combine
information from the whole generated state space so that each model state s is not
explored more often than necessary. In particular, we store a set COV of all distinct
coverage items covered so far, i.e., COV =

⋃
i Ci for all explored states (si, Ci, ωi).

Additional information, including a trace to each coverage item c ∈ COV is stored
in a structure SUITE, that is used to generate the test suite returned by the algorithm.
We first describe an algorithm for coverage criteria without partial coverage items in
Section 4.1, followed by an algorithm handling partial coverage in Section 4.2.

4.1 A Global Algorithm

The algorithm shown in Figure 2 is a modified version of the algorithm in Figure 1. It
works in a similar way, but collects coverage from all explored states (i.e., branches)
in the variables COV and SUITE. The variable COV holds the total set of coverage



(01)PASS:= ∅ ; WAIT:= {(s0, C0, ε)} ; SUITE:= ∅ ; COV:= C0

(02)while WAIT 6= ∅ do
(03) select (s, C, ω) from WAIT; add (s, C, ω) to PASS

(04) for all (s′, C′, ω.t) : (s, C, ω)
t⇒c (s′, C′, ω.t) do

(05) if C′ 6⊆COV then
(06) add (ω.t, C′) to SUITE; COV := COV ∪ C′

(07) if ¬∃(si, Ci, ωi) : (si, Ci, ωi) ∈ PASS ∪ WAIT ∧ si = s′ then
(08) add (s′, C′, ω.t) to WAIT

(09) od
(10)od
(11)return SUITE

Fig. 2. A global coverage algorithm for test suite generation.

items found by the algorithm, i.e., COV =
⋃

i Ci for all explored states (si, Ci, ωi).
For every explored state with new coverage, a tuple (ωi, Ci) is added to the set SUITE.
This makes SUITE a set of tuples with one trace ω to each coverage item in COV. With
ordinary breadth-first search strategy, SUITE will hold a trace to coverage item with the
minimum number of model transitions. The additional information stored in SUITE
will be used to improve the algorithm and the test suite, later in this section.

The loop of the algorithm in Figure 2 has two differences from the algorithm in
Figure 1. In lines (05) and (06) the variables COV and SUITE are updated if the
explored state contains new coverage items that the algorithm has not seen before. Note
that in line (07), we do not consider the coverage C ′ of the generated states. As a
result, a state (s′, C ′, ω.t) is not further explored (i.e., added to WAIT) if the model
state s′ has been previously explored. The algorithm terminates when WAIT is empty
which is the case when all reachable states from s0 have been explored. At this point,
each model state has been explored only once, COV contains all reachable coverage
items, and SUITE includes at least one trace to each coverage item in COV. We shall
return to the problem of generating a test suite from COV in Section 4.3.

4.2 Partial Coverage

We now describe how to modify the algorithms above so that it can be used for coverage
criteria that requires partial coverage items (in analogy with the modified algorithm pre-
sented in Section 3.2). Recall that partial coverage items are needed when the coverage
criteria requires path properties to be covered, like in the definition-use pair criterion
(see Section 2.2).

The modified algorithm is shown in Figure 3. It operates on extended states of the
form (s,A,C, ω), where C and A are the coverage items and the partial coverage items
respectively, collected on the path ω reaching s. The only principal difference com-
pared to the algorithm of Figure 2 is on line (07) where the most recently generated
state (s′, A′, C ′, ω.t) is examined. Here, the state is not further explored if an already
explored state (si, Ai, Ci, ωi) with si = s′ and A′ ⊆ Ai exists in PASS or WAIT. If this
is the case, it can be deduced that further exploration of (s′, A′, C ′, ω.t) is not needed,



(01)PASS:= ∅ ; WAIT:= {(s0, A0, C0, ε)} ; SUITE:= ∅ ; COV := C0

(02)while WAIT 6= ∅ do
(03) select (s, A, C, ω) from WAIT; add (s, A, C, ω) to PASS

(04) for all (s′, A′, C′, ω.t) : (s, A, C, ω)
t⇒c (s′, A′, C′, ω.t) do

(05) if C′ 6⊆COV then
(06) add (ω.t, C′) to SUITE; COV := COV ∪ C′

(07) if ¬∃(si, Ai, Ci, ωi) : (si, Ai, Ci, ωi) ∈ PASS ∪ WAIT ∧ si = s′ ∧ A′ ⊆ Ai then
(08) add (s′, A′, C′, ω.t) to WAIT

(09) od
(10)od
(11)return SUITE

Fig. 3. A global algorithm with partial coverage items.

since the state is not able to contribute coverage items other than those that further
exploration of (si, Ai, Ci, ωi) will yield.

The algorithm of Figure 3 terminates when WAIT it empty. At this point, all reach-
able model states from s0 have been explored, COV contains all reachable coverage
items, and SUITE is a set of pairs of the form (ωi, Ci), where ωi is a trace ending in
a state with coverage Ci, and

⋃
i Ci = COV. It is easy to prove that the algorithm is

sound. It is also complete since for each reachable partial coverage item ai, an extended
state (s,A, C, ω), such that ai ∈ A, has been explored. This guarantees that all feasible
coverage items will be generated since item ci ∈ COV depends only on one (or zero)
partial coverage items in A.

4.3 Improving the Test Suite

When the algorithm above terminates, SUITE is a set {(ω0, C0), . . . , (ωn−1, Cn−1)}.
Ideally, this set should be reduced so that the total coverage

⋃
i Ci is not changed, and

the length of the test suite, i.e.,
∑

i |ωi|, is minimized. The remaining traces ωi can then
be used as the test suite. However, selecting a subset of traces with this property is a
version the well-known set covering problem which is NP-hard [21].

The likewise well-known technique of prefix elimination can be used as an approx-
imative solution to the problem, i.e., to make sure that there are no pair of traces ω, ω′

in SUITE such that ω is a prefix of ω′ of the other way around. However, this approach
has some obvious problems, including the fact that SUITE could still include redundant
traces, i.e. traces that can be removed without reducing the total coverage of SUITE.

We have chosen an algorithm that can be performed incrementally, as part of the
main test case generation algorithm. It can also be applied to SUITE when the main
algorithm has terminated. It checks that each (ωj , Cj) in SUITE satisfies the condition
Cj * C0 ∪ . . . ∪ Cj−1 ∪ Cj+1 ∪ . . . ∪ Cn−1, i.e., (ωj , Cj) contributes to the total
coverage of SUITE. As we shall see in the next section, this approach has worked well
in our experiments.



Table 3. Time (in seconds) and space (in MB) performance of the algorithms.

Local Algorithm Global Algorithm
time mem len states tr time mem len states tr

Train e 6 (0)
full 2.9 9.6 15 3353 1 1.25 9.3 15 1645 1
reset 3.85 10.5 15 7375 1 - - - - -

Train du 12 (5)
full 37 14 47 27129 1 2.4 9.3 l56 1717 4
reset 107 33 47 114697 1 - - - - -

Philips du 109 (42)
stop 30 9 10 30 5797 1 1 9.2 80 170 8
stop 60 1085 87.7 69 461305 1 2.6 9.2 204 393 16
full - - - - - 16.4 10.6 681 7579 37

WAP e 68 (0)

stop 20 4.29 12.7 55 5105 1 4.17 12.5 161 4361 5
stop 30 30.8 31.2 86 35615 1 4.51 12.5 175 4395 5
stop 68 - - - (7348332) 0 38 32 818 37503 12
full - - - - - 3871 1946 818 3850877 12

WAP ei 68 (68)

stop 20 10.85 12.7 58 5404 1 8 12 58 5299 1
stop 30 525 52 93 71328 1 15.9 14.9 189 7291 3
stop 68 - - - - - 280 111.2 1718 200011 19
full - - - - - 4093 2025 1718 3937243 19

5 Experiments

For the experiments in this section we use our tool UPPAAL COXER that takes as input
a timed automata model and a coverage criterion.

Models and Coverage Criteria: We will use three models that are documented in the
literature: a train gate example (Train) where four trains and a controller are modeled
[32], a audio-control protocol with bus collision detection by Philips (Philips) [3], and
a WAP stack (WAP) modeled and tested in [15].

We present experiments of three different coverage criteria edge (e), definition-use
pair (du), and edge init (ei). In the edge coverage criterion a coverage item is a traversed
edge in an automaton. If several instances of the same automaton are used, it does not
distinguish between different instances exercising the edge. The du-pair criterion is
described in Section 2.2 of this paper. The edge init coverage criterion requires an edge
to be exercised, as in the edge coverage criterion. For the coverage item to be satisfied,
the test case must also put the system back to a state that is similar to the initial system
state.

Results: In Table 3 the performance of the local and global algorithms is presented. The
algorithms were executed using breadth-first search strategy on a SUN Ultra SPARC-II
450MHz.

The leftmost column of the table specifies the input used in the experiments, i.e.,
the model, the coverage criterion, the number of coverage items, and (in parentheses)
the number of partial coverage items existing in the model. In the second column the
following keywords are used: full for exhaustive search, stop x for termination after x



found coverage items, and reset if resets are used in the model (as described in Sec-
tion 3.1 this is applicable only in the local algorithm). For both the local and global
algorithm we give the following numbers/columns, generation time (time), memory
(mem), length of the trace (len), number of states generated (states), and number of
traces generated (tr).

The rows marked Train e 6 (0) show performance for the train gate model with the
edge coverage criterion on the instances of the train automaton. There are six coverage
items to be covered, with zero partial coverage items. The global algorithm generates
1645 states which is the size of the model. The local algorithm generates 3353 or 7375
states without and with resets, respectively.

For the rows Train du 12 (5) the definition-use criterion has been used. There are 12
different coverage criteria and five partial coverage items. The size of the generated state
space of the global algorithm increases (due to the partial coverage items) modestly to
1717 (+4.3% compared with the actual size of the model state space). For the local al-
gorithm this increase is from 3357 states to 27129 (or 114697 when resets are used). We
note that the global algorithm performs substantially better than the local algorithms. In
fact, it generates only 6% (or 2%) of the states used by the local algorithm(s). The gain
in execution time is similar.

For the models in the rest of the table we have not been able to run exhaustive
analysis with the local algorithm, nor have been able to use resets. Still the experimental
results show how the algorithms scale up for different models and coverage criteria. In
all the examples, the global algorithms outperforms the local algorithm.

6 Conclusion

In this paper, we have studied algorithms and ideas for test suite generation applicable
to automata models with semantics defined as a (finite) transition system. We have
reviewed algorithms derived from ordinary reachability analysis algorithm, similar to
those used in many model-checking and planning tools. Such algorithms can be used
to generate test suites that follow a given coverage criterion and are optimal in e.g, the
total number of model transitions the test suite will exercise. We have further elaborated
these algorithms by adopting existing abstraction and pruning techniques often used in
model-checking algorithms.

The main contribution of this paper, is a novel global algorithm for model-based
generation of test suites following a given coverage criteria. At any given point, the al-
gorithm — which is inspired by the priorly described reachability analysis algorithms
— uses knowledge about the total coverage found in the currently generated state space
to guide and prune the remaining exploration. In this way, the algorithm avoids unnec-
essary exploration and generates a test suite with reasonable characteristics.

All algorithms presented in this paper have been implemented in our test case gener-
ation tool UPPAAL COXER. To compare and evaluate the algorithms, we have performed
a number of experiments on a set of models previously described in the literature. In par-
ticular, the evaluation gives experimental evidence that the suggested global algorithm
uses substantially less memory and time than local algorithms, and outputs test suites



that are not far from optimal. In this respect, the suggested global algorithm increases
the maximum size of models for which test suites can be algorithmically generated.
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