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Abstract

SDL is intended for the specification of complex, event-driven, real-time, and in-
teractive applications involving many concurrent activities that communicate using
discrete signals.

Although the behaviour of an SDL system is clearly defined by the semantics of
SDL, analysis of the real-time behavoiur is still hard to do for such a system. Timing
and the arrival order of signals is of paramount significance for correct behaviour. So, it
would be very difficult to do an exhaustive testing on an SDL system during run-time.
This is partially because we cannot control the order of arrival of signals to a process,
at least not for signals internal to the SDL system. No matter how many times we run
a test suite, it is possible that signals always come in the same order at a specific state
of the system.

Happily, there are verification tools for analysis of models of real-time systems e.g.,
UPPAAL. The basis of the UPPAAL model is the notion of timed automata developed by
Alur and Dill as an extension of classical finite-state automata with clock variables. If
we could transform an SDL system into a network of timed automata while conserving
its behaviour we would be able to let UPPAAL do the verification.

In this report we describe and implement a translation from an SDL (Specification
and Description Language) syntax to a language (xta) used in the UPPAAL tool. We
show how it is possible to simulate implicit and explicit channels, queues, timers, dy-
namic process creation and process execution. Apart from timers we can also simulate
worst and best execution time per action statement in the process.
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1 Introduction

1.1 Overview and objectives

The objectives of this work is to describe, and implement, a translation from an SDL [Z.100]
syntax to a language (xta) for the UPPAAL [LPY97] tool.

SDL is intended for the specification of complex, event-driven, real-time, and interactive
applications involving many concurrent activities that communicate using discrete signals.

Although SDL is widely used in the telecommunications field, it is also now being
applied to a diverse number of other areas ranging over aircraft, train control, medical and
packaging systems [SDL02].

Although the behaviour of an SDL system is clearly defined by the semantics of SDL,
analysis of the real-time behavoiur is still hard to do for such a system. Timing is of
paramount significance for correct behaviour. One of the problems is that the arrival order
of signals to a queue matters for the behaviour. So, it would be very difficult to do an
exhaustive testing on an SDL system during run-time. This is partially because we cannot
control the order of arrival of signals to a process, at least not for signals internal to the
SDL system. No matter how many times we test/simulate, it is possible that they always
come in the same order at a specific state of the system.

Happily, there are verification tools for analysis of models of real-time systems e.g.,
UPPAAL. The basis of the UPPAAL model is the notion of timed automata [AD94] developed
by Alur and Dill as an extension of classical finite—state automata with clock variables. If
we could transform an SDL system into a network of timed automaton while preserving its
behaviour we would be able to let UPPAAL do the verification.

The language used in our study is a variant of a subset of SDL. To separate SDL from
our language we call our language SDL;4,, (see Appendix B and C for the definition). The
syntax of SDL,y, is based on SDL version 1992 (SDL-92). It includes most of the features
from SDL-88, but the data types are taken from UPPAAL’s .xta format. We have also added
a syntax for adding best and worst case execution time (BCET/WCET) for each action in
an SDL process. We give an overview of the differences in Appendix A, Differences between
SDL-92 and SDL 4.

Manual sdl2xta

SDL SDL ., | xta

——————— >

Figure 1: The path from SDL-92 to UPPAAL’s .xta

1.2 Conversion problems

There are several problems that we have to solve or work around. Data types in SDL are
of less interest and we don’t include them in our language, SDL;+,. Examples of problems



we deal with in the SDL;, language are simulations of: implicit and explicit channels,
queues, timers, dynamic process creation and process execution. Apart from timers we can
also simulate worst and best execution time per action statement in the process.

In SDL, it is possible to specify systems at many nested levels of abstraction. At the
other hand, in UPPAAL, models are flat, i.e., there is no hierarchy other than the process
level and the global level. So, apart from the local variables we had to flatten every context
in SD,Czta.

In DL, a block or process can be specified as a type. That type can be used many
times in its scope. Type instantiation has been one of the harder problems so solve, even
if this matter is not specific to conversion into UPPAAL.

SDL,tq uses asynchronous signals that are queued at input to the receiving process.
This is very different from the way timed automata work. When two timed automata
synchronize, they simultaneously make a transition (rendez-vous). In SDL, when a process
sends a message there is no guarantee that the receiving process is ready to receive that
signal.

We have had a difficult task to implement the behaviour of the SDL queue, because it
has a complex behaviour. A process can save a set of signals when it is in a specific state.
Signals that are not in the save set and for which there are no transitions, are discarded.

When an SDL process sends out a signal without specifying the destination by process id,
then the destination is determined by combining several hints in the output in conjunction
with the system structure specification. The problem of signal delivery is solved in the
conversion, and it may result in more than one receiving process for an output. This is
called implict signal addressing and is one of the major problems for which we propose a
solution in this report.

We also attack the problem of dynamic creation of processes. We cannot allow an
unbounded number of processes but we can simulate dynamic creation up to a maximum.
One problem that arises from this is that the process identity numbering makes the search
space for UPPAAL infinite.

We have to interpret all flow control in the process including, the state machine itself,
decisions and joins in the transitions.

We simulate a system where all processes are concurrent. We do not take in account
whether two processes runs in the same block or not. In our model we don’t have any delay
on signal delivery at all. The only time that we take in account is the processes’ timers,
and the best/worst execution time of actions, when such time is supplied by the user.

As UPPAAL cannot compare a clock value with a variable, we have done our timers so
they count discrete time units and thereby we can make a delay until a certain amount of
time has passed.

1.3 Organization

The remainder of the document is organized in the following way:
e In Section 2, SDL, we give an introduction to SDL

e In Section 3, UPPAAL, we give an introduction to UPPAAL.



In Section 4, SDL run-time system building, we present the architecture of, and the
abstract ideas behind, the UPPAAL .xta code, that we generate. We also discuss signal
analysis.

In Section 5, Process conversion, we present the conversion of an SDL process. The
communication between the queue and the process is explained. We also explain each
SDL process action transition construct.

In Section 6, Brief example, we give a first example.
In Section 7, Conclusion, we discuss our achievements.

In Appendix A, Differences between SDL-92 and SDL ., we give an overview of the
differences between SDL-92 and SDL ;-

In Appendix B, BNF of SDL,;i,, we present a Backus Nauer Form (BNF) for
SDL,.except the UPPAAL .xta part.

In Appendix C, Rules related to UPPAAL used in SDL,y,, we present a Backus Nauer
Form (BNF) the UPPAAL .xta part in SDLyy,.

In Appendix D, Usage of the conversion program, we describe how to download and
use the conversion program, sd12xta described in this document.

In Appendix E, The signal analysis algorithm, we outline the algorithm how possible
receivers for an SDL output is found.



2 SDL

2.1 Definition

Specification and description language (SDL)! is an object-oriented, formal language de-
fined by The International Telecommunications Union Telecommunications Standardization
Sector (ITU-T) (formerly Comité Consultatif International Telegraphique et Telephonique
[CCITT]) as recommendation Z.100 [Z.100]. The language is intended for the specification
of complex, event-driven, real-time, and interactive applications involving many concurrent
activities that communicate using discrete signals.

2.2 History

The development of SDL started in 1972. A 15-member study group within CCITT repre-
senting several countries and large telecom companies like Bellcore, Ericsson, and Motorola
began research on a standard specification language for the telecommunications industry.
The first version of the language was issued in 1976, followed by new versions in 1980, 1984,
1988, 1992, and 1996. The latest versions expanded the language considerably specifically
the object oriented additions. Today SDL faces an itegration with OMG’s Unified Modeling
Language (UML) [SDL02].

2.3 Behaviour overview

An SDL system is defined by the behaviour of the processes it consists of and how they
are interconnected. By ignoring many details we can describe a SDL system at run-time
as process instances that communicate by sending signals to each other and/or to the
environment (see Figure 2).

Each process can be viewed as a finite state machine [Holtz91] [Brau84], acting on
input. Depending on its next input, the process performs a transition, that may include
many actions, and finally moves to a new (possibly the same) state. Its next state may be
determined by decisions in the actions. In SDL, a state is a location where only input from
the queue can trigger a transition.

Communication in an SDL system is asynchronous. Figure 3 shows how transmitted
signals are put in the queue of the receiving process instance. In Section 5.3 we will take a
closer look at how a process instance interacts with its queue.

"Proposals have been made to re-assign the acronym to System Design Languages [LNCS2078]
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Figure 2: System behaviour of SDL.
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2.4 Structure

Structure is essential in SDL. At the top of the hierarchy of an SDL specification there is a
system. A system contains blocks, futher a block contains processes or it could also be
subdivided (or partitioned) into sub-blocks. We will call non partitioned blocks leaf-blocks.
If a block is partitioned it contains only one substructure. A substructure contains blocks
in the same manner as a system. We will not consider lower levels than the process level
in this document.

We can thus identify the following hierarchical levels:

e system

partitioned block

partitioned block
leaf-block

® process

System level A system is the highest level building block in the hierarchy. A system
consists of blocks connected by channels, a block can also be connected with the environ-
ment, see Figure 4. As the system is the higest level, connecting to the environment means
connecting to an environment outside the specification. This could be I/O from a human
user as well as from another system. When connecting to the environment, the system is
considered as open. In SDL;;, we will not allow an open system. In Section ??7 we will
address this issue more. A BNF for system in SDL,;, is defined in Section B.6.

system

block

' block
channels A

Figure 4: System with block.
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Partitioned block level A partitioned block is a block containing a block substructure
that itself contains blocks, just like a system. A partitioned block is shown in Figure 5. In
a block substructure, channels can connect two blocks or connect a block to an external
channel. In a block substructure, an internal channel, with one endpoint connected to the
environment, can be connected to one external channel. The SDL,;, block substructure is
defined in Section B.8.

block
substructure
e channels
(outer channel H—>—‘ S
block S

F«F (outer channel)
2" | block

Figure 5: Block with substructure.

Leaf-block level In Figure 6, we show a block at leaf level. We will refer to this type
of block as a leaf-block because is it a leaf in a hierarchy. A leaf-block contains processes.
A process can be declared to have multiple instances. Therefore we refer to each process
declaration as a process set. The communication channels in a leaf-block are called signal
routes. A signal route can go from one process set to another process set or from a process
set to the environment. A signal route that goes to the environment in a leaf-block is
connected with a channel at the outside of the block. A BNF for block in SDL;;, is
defined in Section B.7.

(outer channel

(outer channel)
process set

signal routes e :

Figure 6: Block with process sets.
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Process level The dynamic behaviour of an SDL system is due to processes. A BNF
for process in SDL,;, is defined in Section B.9.

2.5 Communication

Signals A signal can be declared in a system, a block, a substructure or a process.
A signal must be declared in the highest of the scopes that uses it. A signal can have
parameters. A BNF for signal in SDL,;, is defined in Section B.3.

Channels Channels are used in systems and substructures. A channel has two endpoints,
these endpoints can either be connected to blocks or to the environment. A channel can
be uni-directed or bi-directed. The with construct restricts, for each direction, the set of
signals the channel can convey. The via construct refers to a gate, which will be discussed
in Section 2.6. Channels are delayed non-deterministically. This means that when a signal
is sent through a channel there is no guarantee when it is delivered to the receiver, but as
the channels are FIFO all sub-sequent signals must also be delayed until the first one is
delivered. Since SDL-92, it is possible to use nodelay to declare a non delaying channel.
In our study all channels are treated as if they were declared as non delaying channels. A
BNF for channel in SDL,;, is defined in Section B.4.

Signal routes Inside a leaf-block the communication channels are called signal routes.
Signal routes are similar to channels. The with and the via constructs work in the same
way as for channels. Signal routes are never delayed. A BNF for signal routes in SDL,;,
is defined in Section B.4.

Connect The connect construct is used to connect an inner and an outer communication
channel path in a block or block substructure. In a leaf-block, the inner communication
channel will be a signal route. A BNF for connect in SDL;4, is defined in Section B.7.

2.6 Types, instance sets, gates and references

Types There is a distinction between instances (or set of instances) and types in SDL
descriptions. It is possible to define types of processes and blocks?. Types are not connected
(by channels or signal routes) to any instances; instead type definitions introduce gates.
These are connection points on the typebased instances for channels and signal routes.

Instance sets One can declare an initial and maximal number of instances for a process.
This is the reason why we wrote process set instead of process instance in Figure 6. The
default is; initial one and maximal one. When more than one process instance is active there
is an ambiguity which instance that will receive a signal, if the signal isn’t addressed by
process id (see Section 2.10). Process instances can be started (created) by other instances
and they can stop themselves. It is also possible to declare a number of instances for a
block. Blocks are static and the number of instances cannot change during run-time.

*Not system in SDLaxa
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Gates A gate is a connection point used instead of connect in typebased instances
(blocks or processes). When using types, channels and signal routes adds a “via gatename”
on an endpoint connecting a boarder of a typebased instance (-set). At a gate one can
restrict the set of signals going into or out from the block (or process).

References System, block, block type, process and process type specifications can be
referenced (see Appendix B.5). A referenced specification is a specification placed in the
global area that shall be considered to be at the place of reference.

Scoping rules A process with the same name can be specified in different leaf-blocks
without any naming conflict. When block types, process types and signals are defined they
can only be used where they are defined or in a sublevel to that specification. This is like
an ordinary programming language with static scoping, e.g., Pascal.

2.7 Graphical and texual representation

In the BNF (see Section B) we use only SDL’s textual representation (SDL/PR). This
is natural because SDL,;, is based on the textual representation and it is SDL;, that
the transformation program in our study uses. SDL also has a graphical representation
(SDL/GR) which we not define formally here. We use it to illustrate structure and be-
haviour.

Figure 7 shows symbols for block, process and their types.

Process: Process type:

Block: Block type:

Figure 7: Process, process type, block and block type.

2.8 States and input behaviour of a process

SDL’s process flowcharts are probably the most commonly known part of SDL. An SDL
process can be thought of as a finite-state machine. It has a set of states and for each state
it has a set of possible input signals. When one of the possible input signal arrives, the
process moves from one state to another (possible the same) state. Such move is called a
transition. A transition is a sequence of actions leading to another SDL-state. Transitions
are described in Section 2.9. Signals can be saved in a state, that means; if a signal is

15



in the save-set of a state, then the signal can stay in the queue and other (later arrived)
signals can be consumed. An arriving signal that is not in the save-set and has no transition
specified for it, is discarded.

States In a state, the process waits for an incoming signal. The process queries the queue
for the next signal and decides which transition it shall follow. A state is declared with the
state keyword in a textual description. The initial state is an anonymous state declared
with the start keyword in a textual description. In a state the inputs with their transitions
and the save-set are declared. It is possible to specify some inputs for more than one state
by emumerating the states that the inputs shall be connected to. The asterisk wildcard *
can be used following by a list of states inside parentheses indicating that the inputs for
this “state” shall be considered as input for all states in the process except those inside the
parentheses.

Input The graphical symbol of an input is shown in Figure 8. One or more signals can
be in the input symbol, indicating that the following transition will be performed for any
of the signals. Inputs are declared with the input keyword in a textual description. The
asterisk wildcard * can be used instead of specifying a signal or a list of signals. The
asterisk means that for this state all signals except those declared at other inputs shall trig
the performance of the transition that follows the input.

<signal(params)>|

Figure 8: The SDL input symbol.

Save In a state a save-set can be declared that is saved as long as the process stays in the
state. Save-sets are declared with the save keyword in a textual description. The graphical
symbol for save is shown in Figure 9.

The asterisk wildcard * can be used instead of specifying a signal set to save. The
asterisk means that for this state all signals except those declared at other inputs are in
the save-set.

Conditional and continuous input It is possible to declare an enabling condition on
an input. Conditions are declared with the provided keyword in a textual description. If
no signal is given for an input then the input is a continuous input. Such an input must be

16



Figure 9: The SDL save symbol.

guarded by a condition. A continuous input transition can be performed first when there
are no other signals in the queue. The guarded input is not yet implemented in SDL ¢,.

Priority Signals with priority are treated differently in the input-queue. A signal with
higher priority is sorted before other signals with lower priority (or no priority) in the
input-queue. To set priority the priority keyword is used in a textual description. Priority
1 is higher than 2 etc. Priority is not implemented in SDL 4.

Spontaneous transition If the signal for an input have is named none then the succeed-
ing transition is a spontaneous transition i.e., the succeeding transition can be activated
without any stimuli for the process. This will make the state-machine non-deterministic.
Spontaneous transitions are not implemented in SDL 4.

2.9 Transition

Formally, a transition consists of a sequence of action statements with an optional transition
terminator or just a transition terminator. Action statements and transition terminators
will be explained in Section 2.10 and Section 2.11. If no terminator statement is given,
then the process stays in the same state. The BNF of the transition, the action statement,
and the terminator statement can be found in Appendix B.12.

Action statements As action statements we count tasks, outputs, decisions, set and
reset of timers, and creation or processes. A task is used to do calculations, an output
sends a signal to another process, a decision split the control into multiple paths depending
on data, set and reset controls a timer, and create starts a new process instance.

Terminator statements As terminiator statements we count nextstate, join, and stop.
Nextstate decides the process next state, join connects transfer the control to a particular
place in another transition, and stop stops the execution of the current process instance.

2.10 Action statements

An action statement is an optional label followed by a task, an output, a decision, a set
or reset of a timer, or a creation of a process. We will explan set and reset of timers in
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Section 2.12 and creation of processes in Section 2.13.

Label A label marks a point in a transition where another transition can join by referring
to the label name. A label is an identifier name followed by a colon.

Task In a task some computational work can be done, procedure? can be called, variables
can be assigned etc. External actions can also be made here often expressed as informal
text. Figure 10 shows the graphical symbol of a task.

<task>

Figure 10: The SDL Task symbol.

Output Communication between processes is done by sending messages. When a process
sends a message it uses the action output. The keyword in the textual representation is
output. In the textual representation the output construct consists of the output keyword,
a signal identifier with optional parameters, an optional to construct, and an optional via
construct.

The to construct consists of the keyword to followed by an identifier of the process
to send to. The identifier could be a variable of type PId or a name of a process-set.
The former includes the special SDL PId variables self, sender, parent, and offspring.
Where self is the process’ own pid, sender is the pid of the last handled signal, parent is the
pid of the creator of the process, and offspring is the pid of the last created child created
by the process. All except self variable can have value zero. The sender variable if the
process hasn’t received any signal, the parent if the process was created at initialization,
and the offspring if no child has been created. The via construct consists of the keyword
via followed by one or more identifiers. An identifier can be a gate, a signal route, or a
channel. The purpose of the via is to show the path out from the process and thereby
constrain the receiving process-sets. Figure 11 shows the graphical symbol of an output.

Decision A transition may split into two or more branches depending on some condition
using the decision construct. The decision construct consists of a question and a decision
body inside a decision enddecision pair. The decision body consists of answers, each
of them has a continuing transition. One of the answers can be an else answer which is
then the supplement of all other answers. After the enddecision all transitions that not

3Procedures are not implemented in SDL1q.
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<signal(params)>

Figure 11: The SDL output symbol.

end with a terminator statement are implicitly joined and continues with the consecutive
transition. If the question of the transition is a any question, then all answers are empty
and one of the answers is chosen randomly at execution. Figure 12 shows the graphical
symbol of a decision.

<answerl>

<answer2>

Figure 12: The SDL decision symbol.

2.11 Terminator statements

Nextstate, join, and stop are terminator statements. The stop statement will be described
in Section 2.13.

Nextstate When a transition has been performed, then the control returns to a “stable”
state, where the process waits for a new input signal. A nextstate construct consists of the
nextstate keyword and an identifier for the next state. If an hyphen “-” is given instead
of an identifier, control stays in the same state for the process.

Join Join has the same effect as a goto in a programming language. It directs the flow of
control to a point that is marked by a label. This name is given in the join construct after
the join keyword.
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2.12 Timers

A timer is declared (defined) inside a process. At run-time each process instance has its
own set of the declared timers. A timer is set to expire at a certain time in the future.
When a timer expires, it send a signal (named after the timer) to its process’ queue. It
becomes active when it is set and becomes inactive when it is reset or when its signal is
consumed by the process. The timer’s signal is put on its process’ queue like all other
signals, so it is possible for the process to set or reset the timer after a timer signal has
been put on the queue, but before it has been consumed. In this case the timer signal is
removed from the queue. This makes it impossible for the process to get the timer signal
twice from the single set occasion or to get a timer signal after it has reset the timer.

Set The set statement consist of the set keyword and two arguments inside parentheses.
In the first argument is a time expression and the second the name of the timer. The time
expression is calculated in run-time to the time when the timer shall expire and send its
timer signal. It usually contains an offset to now. The first argument can be omitted. In
that case the timer expires at time “now + duration” where duration is derived from the
timer definition.

Reset The reset statement consist of the reset keyword and inside parentheses the timer
to be reset. After a timer is reset it cannot expire until it has been set again.

2.13 Process management

Create A create is used to spawn a new process instance of a process set. The create
construct consists of the create keyword followed by the name of the process set wherein
the new instance shall be made. After a process instance has been created the parent
process gets the process id of its child process in a predefined variable named offspring.
At startup, the child process gets its creators process id in the variable parent.

Stop When a process instace has done its work it can terminate itself with the stop
statement. The stop keyword is used for this purpose. Figure 13 shows the graphical
symbol of a stop statement.

Figure 13: The SDL stop symbol.
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3 UprPAAL

3.1 History

UPPAAL is an integrated tool environment for modeling, simulation and verification of
real-time systems, developed jointly by Basic Research in Computer Science at Aalborg
University in Denmark and the Department of Computer Systems (DoCS) at Uppsala
University in Sweden. UPPAAL’s first release was in 1995, and it has been applied in a
number of case studies.

3.2 Definition

UPPAAL consists of three main parts: a description language, a simulator and a model-
checker. The description language is a non-deterministic guarded command language with
simple data types (e.g. bounded integers, arrays, etc.). It serves as a modeling or design
language to describe system behavior as networks of automata extended with clock and data
variables. The simulator is a validation tool which enables examination of possible dynamic
executions of a system during early design (or modeling) stages and thus provides an inex-
pensive mean of fault detection prior to verification by the model-checker which covers the
exhaustive dynamic behavior of the system. The model-checker can check invariant and
reachability properties by exploring the state-space of a system, i.e., reachability analysis
in terms of symbolic states represented by constraints.

3.3 Modeling in UPPAAL

When we take a closer look at the modeling language it is important to remember that
the model is not executed but rather searched by the simulator or the model-checker. In
the simulator we choose one of the possible transitions. All clocks in UPPAAL have fictive
simulated time which has nothing to do with the wall clock or any other time counting
unit. We will come back to this discussion later.
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[1111111111171177711117777
// Global declarations

int mytransferval := 0;
urgent chan mychan;

[1117111111771177711117777
// Templates
process Receiver(urgent chan schan; int stransfer)
{
// local declarations
int secretval;
clock c;

// definition of locations

state begin, wait{c<=2}, end;

// definition of urgent locations
urgent begin;

// The initial location

init begin;

// Transitions
trans begin -> wait {

assign c := 0;

},
wait -> end {

guard c>=1;

sync schan?;

assign secretval := stransfer, stransfer := 0;
};
}

process Sender (urgent chan schan; int stransfer)
{
const secretval 3;
state begin, end;
urgent begin;
init begin;
trans begin -> end {
sync schan!;
assign stransfer := secretval;
s
}

[11117117717771171171771117

// Process assignments (instantiation of templates)
mysender := Sender (mychan, mytransferval);
myreceiver := Receiver (mychan, mytransferval);

[1117117717117717771777777
// System definition
system mysender, myreceiver;

Figure 14: Textual desc%?ption of sender receiver.



3.4 Basics

An UPPAAL system is a collection of automata communicating with channels for synchro-
nization and variables for sharing values. Each automaton has control nodes and transition
edges describing its behaviour. The system’s current state is defined by the processes
locations, the variable and the clock values.

Variables
process mysender mytransferval = 0O
myreceiver. secretval = 0
begin end myreceiver.c in [1,2]
2
@ —— O

myiransferval : = secretval

process myreceiver

c==1

o

) o
. mychan?
ces=2 wait e r;_i‘ﬂ’d
secretval : = ooriransfe

omyiransferval := 0

Figure 15: Simulation of UPPAAL text in Figure 14.

System, Templates and Processes. In UPPAAL’s .ta format a system is declared with
the keyword system follwed by the names of the processes included in the system. Global
variables used in processes must be referred to directly. There is a one-one correspondence
between a declared process and an instance in the system.

In the newer .xta format not processes but templates are defined e.g., Receiver in
Figure 14, still the keyword process is used. A template is a process type with zero or
more parameters. A process (as in the .ta format) is instantiated by parameterizing a
templete. In simulation/verification time the .xta format will have been translated into the
older .ta format. The result is shown in Figure 15. Therefore any reference to Figure 14 is
also a reference to Figure 15.

Locations. Locations are the control nodes of an UPPAAL process. In Figure 14, the
Receiver template has control nodes {begin,wait,end}. After the state keyword all the
process states are listed. The begin location is the Receiver’s initial location defined with
the keyword init.

Transitions. A transition is an edge between two control nodes (locations) in an UPPAAL
process. A transition may be guarded by a timing or data constraint, it may require a
synchronization with another process and it may include a clock or data assignment. After

23



the trans keyword the transitions are listed for the process. A transition goes from one
location to another e.g., wait to end in Figure 14.

Guards. Guards express conditions on the values of clocks and integer variables that
must be satisfied for the transition to be taken. The keyword for guards in a transition is
guard e.g., guard ¢ >= 2; in Figure 14. See Section C for syntax on integer guards.

Synchronization. Synchronization means that two UPPAAL processes change location in
one simulation step. Synchronization is done with (or via) channels. Channels are declared
with the chan keyword e.g. mychan in Figure 14. To synchronize two processes a channel
is specified after the sync keyword followed by a “!” for one of them and a “?” for the
other, e.g. process mysender at location begin has a transition to location end with sync
mychan! and process myreceiver at location wait has a transition to location end with
sync mychan?. Figure 14 shows templates that will be translated to this.

Assignments. Assignments can be done to integer and clock variables in transitions. An
assignment is declared with the keyword assign. Clock variables can, in the current imple-
mentation, only be assigned with constant values. For an exact definition of assignments
on integer variables see Section C. After the assign keyword a comma separated list of
assignments is given, mixing assignments for integer and clock variables is no problem.
In Figure 14 the mysender will communicate its secretval to myreceiver by assigning the
global variable mytransferval, locally called stransfer in both mysender and myreceiver.

UPPAAL processes can communicate in two ways: by sharing data and by synchroniza-
tion. Globally declared data is readable and writable for all processes, e.g. mytransferval
in Figure 14.
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3.5 Enforcing progress in the system

Without considering timing an automaton has the possibility to wait forever in a control
location. Happily timed automata provide a number of ways to prevent this from happen-
ing.

e Invariants
e Urgent Locations
e Committed Locations

e Urgent Channels

Invariants. An invariant is a constraint on the clock values in a location. This put
constraints on the simulator and the model checker. Consider Figure 14, where the Receiver
has an invariant {¢ <= 2} on its wait location. The meaning of this is: The automaton can
remain in location wait only as long as {¢ <= 2}. The transition from the wait location
to the end location can only be taken when 1 <= ¢ <= 2, expressed as “c in [1,2]”. This
is shown in Figure 15.

Variahles
process P1 cin[1,7]
sl 23 end
c==1 cx=13
Ja
o) )
c =10 Cc <=7 c<=5

Figure 16: Possible, but not always.

In Figure 16 we can study how timing constraints work. The control is at location s2.
When leaving location sl we know by now that we have “c in [1,10]”. When we enter
location s2 we have “c in [1,7]” this is because of the invariant {¢ <= 7} on the location
s2. Are we turning time backwards? No, the simulator observes that this transition is valid
only when we have “c in [1,7]”. Cases where “c in ]7,10]” (that is 7 < ¢ <= 10), are no
longer valid after the step. But what if we have “c in ]7,10]”? Don’t we want to know
about this potential model error? If we try to prove, with the UPPAAL’s verifier, that we
always can go from sl to s2, then we will get a negative answer.

In Figure 17 we must have “c in [9,7]” because of the synchronization between the two
processes P1 and P2. Though this is an impossible step the simulator will tell us that we
have reached a deadlock.
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Variables

process P1 cin [1,7]
chl?
sl 52 end
c==1 C==3
T,
o o o
Cc<=10 C ==7 C==5
process P2
51 cx=9
c==10

Figure 17: Impossible synchronization. ¢ cannot be in [9,7].

Urgent Locations. “Urgent locations” are locations that the control must leave without
any delay, as if we had an invariant {¢ <= 0} on the location and “assign c:=0;" on all
incoming edges. This forces the actual process to always make a transition without any
delay. Urgent locations are listed after the keyword urgent e.g, the wait state in Figure 14.

Committed Locations. “Committed locations” are even more restricted than Urgent
Locations. No other process is allowed to make any simulation steps without being synchro-
nized with the committed one. Committed locations are listed after the keyword commit.

Urgent Cannels. When a channel is declared as an urgent channel, then synchroniza-
tions via that channel has priority over normal channels and the transition must be taken
without delay.
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4 SDL run-time system building

When writing an SDL description we model a specification where processes are described
in terms of process types, process definitions in a hierarchy of a system and blocks. In
order to simulate the description, we must then convert the SDL description to an in-
stance domain, we must also design a run-time system which manages process instances
and communication. The interpretation of structure and communication from the SDL
description is handled by SDL’s meta processes such as system, timer and input-queue.
The discussion of converting the behaviour of an individual process such as input, output,
decisions and queuing, will be deferred to Section 5.

In this section we will outline how UPPAAL automata can work in a structure to simulate
an SDL run-time system. We will also look at our implementation of SDL’s meta processes
in UPPAAL. This includes our solutions for: timers, dynamic process creation, and signal
delivery.

4.1 SDL,, run-time overview

Each SDL process instance will have its own queue instance and a timer instance for
each declared timer. Consider Figure 18, we have a dashed line, labeled Process Instance
(PI) around the UPPAAL processes that are generated for each SDL process instance. We
parameterizing UPPAAL templates in a appropriate way.

If we declare more than one instance of an SDL process, we get a process set. A process
set is a collection of process instances, which differs only by their process id (pid). Signal
routes that are connected to a process set are equally connected to all process instances.
If an incoming signal is not addressed to a specific pid then each created process instance
has equal opportunity to receive the signal. We simulate this signal ambiguity by means of
an UPPAAL process called process set input (PST), common for all instances in the process
set.

When any process instance, in a process set, is sending a signal without specifying the
receiving pid, then there can be more than one possible receiving PSI. This ambiguity is
due to underspecification. To simulate this ambiguity we create, for each process set, an
UPPAAL process called process set output PSO. In an SDL output it is possible to restrict
the receiving PSIs by using SDL output’s via or to construct. The task of the PSO is
that for each output, it should route the signal to the right PSI. If there is more than one
possible PST then it shall chose one randomly. The PSO is shared by all process instances
in a process set, just like the PSI. Figure 20 shows the UPPAAL processes that are involved
at signal delivery.

When a signal has been sent and the receiving pid is specified the signal goes via a
global UPPAAL process called Expl. When Expl receives a signal it send the signal to the
queue with the specified pid. We will discuss this more thoroughly in Section 4.2.

In UPPAAL there are a fixed number of automata during the simulation/model check.
To simulate dynamic creation and termination of processes we add locations where the
automata are considered inactive. When an SDL process is about to create a new instance
of another SDL process, it communicate with the PSI of the process set where the new
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Figure 18: Generate of a process set.

instance is to be created. The PSI will, if there is any inactive instance left, activate one.
In SDL we would get a new pid for each created process instance. This would make the
search space for UPPAAL infinite and as a consequence make it impossible for UPPAAL’s
model checker to prove anything for all system states. Our solution is to reuse pids. An
instance keep its pid even when it is inactive. By removing all knowledge of a pid in the
system when the process instance terminating, we achieve an almost correct pid semantics.
The work of removing a system’s knowledge of a pid is done by an UPPAAL process called
RemPid. Figure 24 shows the UPPAAL processes that are involved in process instance

creation.
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In Figure 19 we show all types of processes, UPPAAL synchronizations, and data storage
in our SDL, ,run-time system. We henceforeward simplify the notation of the UPPAAL
synchronization channels and variables by only using their functional names and thereby
omitting the scoping prefix. The valid scope for each name is shown in Table 1 and Table 2.
We give three examples to shed some light on this.

Firstly, when a process synchronizes over a nextsig channel only the queue in the same
process instance can synchronize with it, i.e., a nextsig channel has a prefix so it is only
“shared” inside a process instance.

Secondly, when a PST synchronizes over a implsig channel any PI’s queue process in
the process set can synchronize with it, i.e., a implsig channel has a prefix so it is only
shared inside its process set.

Thirdly, when the Expl (there is only one) synchronizes over the explsig channel any
queue can synchronize with it, i.e., the explsig channel is globally known.

Data storage globally shared

RemPidVars rem pid Pid for removal
Other global glivel[] Bitarray for activation control
pids[] Storage for pids

ExplVars

expl_signal
expl_params[]
expl_sender
expl_to

Signal

Parameters (array)

sender’s pid. Index to pids[]
Destination pid, explicit addressing

Data storage shared for a Process Set (PS)

Vars PSO

pso_signal
pso_params []
pso_sender

Signal
Parameters (array)
Sender’s pid. Index to pids[]

CreVars PSI

ps_offspring
ps_parent

Index in pids[] to parents offspring
Index in pids[] to parents pid

Vars PSI

psi_signal
psi_params/[]
psi_sender

Signal
Parameters (array)
Sender’s pid. Index to pids[]

Data storage shared for a Process Instance (PI)

NextVars

in_signal
in_param[]

Signal
Parameters (array)

Other PI Vars

self
parent
offspring
sender

PI’s pid, constant

PT’s creator’s pid. Index to pids[]

Last child’s pid. Index to pids[]

Sender of last signal’s pid. Index to pids[]

For each timer:¢

t_set_time

Value timer ¢ is set to

Table 1: Explanation of storage from Figure 19.
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UPPAAL channels

globally shared

sdl_pid remove | Syncs PI and RemPid when PI stops
sdl_explicit Syncs a sending PI and Expl when explicit addressing
explsig Syncs Expl with the queue of the PI with the
right pid at explicit addressing
UPPAAL channels shared for a Process Set (PS)
output Syncs PI and PSO, one “output”-signal
for every different SDL output implicit addressing
psisig Syncs external PS’s PSO with channel’s PSI. Deliver signal
implsig Syncs PSI with PI's queue
create Syncs external PS’s PSO PI with signal’s PST
start Syncs PSI with PI, to start the PI
stop Syncs PI with PSI, when PI stops
UPPAAL channels shared for a Process Instance (PI)
savesig Process decide to save signal
acceptsig Process decide to save signal (or discard)
nextsig Process gets next signal from queue
contsig Process gets OK from queue to take the continous signal
timer Syncs timer with queue
set Process sets timer (one per timer)
reset Process resets timer (one per timer)

Table 2: Principal UPPAAL channels in run-time system.
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4.2 Signal delivery

Process Set (i)

Process Instances 0..PSjmax

T

Process Instances 0..PSimax

.,/ Timers 0..N @
It
1

Rempid

LEGEND:
UPPAAL process

———= Path of implicit SDL signal, Process —> PSO —> PS| —> Queue

----- > Path of explicit SDL signal, Process —> Expl —> Queue
— — = SDL timer signal, set by Process (internal for instance)

=g Queue input

Figure 20: Ta signal paths.

Explicit signal delivery For explicit delivery of signals the Fxpl UPPAAL process is
used. There can be only one Ezpl process in the whole system. The Expl UPPAAL process
is shown in figure 21. If an output action of a process explicitly sends a signal to a known
pid, then there is a unique receiver. The sending process instance, synchronizes with
the Expl process over UPPAAL channel sdl_explicit which is globally known. In that
synchronization, the process transfers data to unique global locations used by Ezpl, see
EzxplVars in Table 1. After this synchronization, Fxpl delivers the signal to the process
instance with the destination pid. This synchronization uses the explsig UPPAAL channel.
It is the input-queue of the process instance that receives and stores the data. There is a
boolean value in a global array called qlive[] where the instances track if they are active
or not. Instead of waiting for a process instance queue to synchronize, the Exzpl UPPAAL
process discards the message if the receiving queue is inactive.
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explsig!

.
sdl_explicit? Have signal

Wait

glive[expl_to] ==false

expl_to :=0,
expl_signal :=0

Figure 21: The Ezpl ta process.
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Implicit signal delivery When the pid for the receiving process instance is not known
i.e., it is not given by the output action, the signal will take a different path to its desti-
nation queue. We will refer to such output as implicit signaling. Implicit outputs can be
ambiguous. We have to simulate this ambiguity in the generated code. The signal analysis,
described in Section 4.4 will for every output decide the possible process sets where the
signal can be received. In a run-time system, this knowledge resides in the process set
output (PSO) of the sending process instance.

An implicit output of an SDL-process is handled as follows. Firstly, the sending SDL-
process synchronizes with its PSO process over an UPPAAL channel named after the signal
and the contraints of the output. The PSO serves all process instances which shares this
UPPAAL channel. In that synchronization the sending process instance transfers data to its
PSO’s storage called Vars PSO, described in Table 1. After this synchronization, the PSO
synchronizes with one of the PSTs that is in the possible destination set. Here the sending
PSO uses the receiving PSI’s data storage, Vars PSI, the PSO and the PSO synchronize
over PSI’s UPPAAL channel for incoming signals. The PSIT is unaware of which PSO it is
communicating with. Lastly, the PSI transfers the signal to one of the process instances’
queue. The PST is serving the queues for all process instances in the process set, and when a
signal is arriving via an implicit path, the receiving process instance is any of the (running)
process instances. To get the desired effect we use ambiguous UPPAAL synchronization.
That is, the PST synchronizes with one of the queues. The queue reads the values from
the VarsPSI.

To explain the functioning of the PSO consider Figure 22. We can see that its SDL-
process has only one output, namely “output Money via sri”*. There are two possible
receivers of the signal, P1 and P2. The process set P1 has two instances. The latter
observation comes from the edge that communicates with neither of the process sets. It
is guarded with a test where all instances of all possible receiving process sets must be
inactive for the transition to be taken. P1’s instances are named P1_1 0 and P1_1_1. First
we have the name of the process set (P1) then we add a unique number for this process
set, in this case 1 and the last figure is an instance counter. For the process set P2 that
has only one instance, that instance has the name of the process set.

For the PSI consider Figure 23, it is a generic process. This UPPAAL template is
used for all process sets. It is mediating the signals from a sending PSO to one of the
input-queues in the PSI’s process set. If there is no process instances started, it will not
accept any signals. This forces the sending PSO to either send the signal to another PST
or discard it. The create and stop edges are part of the dynamical process management,
described in the next section.

It can have more, if they are all exactly the same.
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pso_signal := 0,
pso_patams[0] :=0,
pids[pso_sender] := 0

P1_1_psisig!
P11 signal := pso_signal,
P1_1_params|0] := pso_params|[0],
pids[P1_1_sender] := pids[pso_sender]

P2_2_psisig!
P2_2_signal := pso_signal,

P2_2_params|0] :=pso_params|[0],
pids[P2_2_sender] := pids[pso_sender]

output_Money_via_srl1?

Got_output_Money_via
Wait

glive[P1_1_0_self] ==false,
glive[P1_1_1_self] == false,
glive[P2_2_self] := false

Figure 22: An example PSO UPPAAL process.

sdl_stop? started == maxval
sdl_create?

started := started - 1 pidsfoffspring] := 0

sdl_start!
started := started +1

O

implsig!

Create started < maxval

Q Have signal

started > 0
sdl_create? psisig?

Figure 23: The PSI UPPAAL process.
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4.3 Dynamic creation of processes

In this section we describe how we simulate dynamic creation of processes. In UPPAAL
we can only use a fixed number of processes. This restricts us to a maximum of processes
given at specification. A maximum number of instances can be specified for each process set,
stating how many simultaneous instances a process set can have. When a process instance
terminates, it gives room for a new instance, etc. Qur solution is to generate the maximum
number of instances and let them keep thier process id. SDL specifies that a newly created
process instance shall have a new and unique process id. To follow this semantics and still
keep the same process id we instead let the rest of the system forget about a process id
when a process terminates. To get the right number of initial process instances per process
set we create an UPPAAL process that starts the appropriate number of instances for each
process set. Some instances are active and other are passive. We ensures that signals can
be delivered only to an active instance’s queue. We also have to make a control signal path
from a creating process to the process set where an instance shall be created.

Process creation. When an SDL-process in a process set wants to start a process in-
stance in another process set (or even its own), it synchronizes with the PST of the process
set it wants to start. Consider Figure 23. When the PSI gets a request for a creation
of a new process instance and its maximum number of instances is not reached, it does
a transition to the Create location. In this transition the creator has set the receiving
process set’s ps_offspring value to a reference to its offspring value. Also it has set its
own pid in the receiving process set’s ps_parent. Futher in the transition back from the
Create location it commence execution of one of the process set’s inactive instances. In
that transition, the started SDL-process sets its pid to the creator’s ps_offspring and
moves the ps_parent to its own offspring.

Start the initial instances. The StartUp UPPAAL process has a very simple task. It
creates the initial number of process instances for each process set. This is done in the same
way as when a new process instance is created. For each process set where the number
of instances at system start (the initial value) is greater than zero the StartUp UPPAAL
process synchronizes with the PST of the process set over the process set’s create UPPAAL
channel, once for each initial instance. Consider Figure 25; it creates on instance for the
pl process set and one for the p2 process set.

Start and stop of an SDL-process. In Figure 26 we show an excerpt of an UPPAAL
SDL-process. At the location labell the SDL-process starts and when it stops it goes
to location iSDL_stop. Note, we are using the iSDL_ prefix for internal SDL locations
i.e., SDL process management. The locations shown are the start up sequence and the
termination sequence. The initial state of the SDL-process is called iSDL_Inactive. This
location simulates that the process instance does not exist. When the PSTI of the process
instance gets a create message, the PSI synchronizes with a process instance over channel
sdl_start. The control moves to iISDL_Start. In that move the creating and the created
process instances exchanges pids. The ps_offspring has been set to the index in pids[]
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UPPAAL process

———= Create request
- - - = Starting one of the instances
- - - -> Starting queue

Figure 24: Principles of create.

where the creating process instance has its offspring and the ps_parent index in pids[]
has been set to the creating process instances’ pid. In the move from iSDL_Inactive to
iSDL_Start the created process sets the creators offspring (indirected) to its pid (self) and
sets its parent (indirected) to the creators pid.

When moving from iSDL_Start to the initiation actions the process instance’s queue
is started by a synchronization, locally called q_start.

When an SDL-process stops it goes to the iISDL_Stop location, starting a termination
phase. When it moves from iISDL_Stop to iSDL_StopQueue it synchronize with its PST.
The PSI counts the number of active process instances and it can now decrease the number
by one. When it moves from iSDL_StopQueue to iSDL_RemPid it synchronizes with
its queue. After this synchronization the queue becomes inactive and can’t receive any
signals. When the control moves from iISDL_RemPid to iSDL_Reset it synchronizes
with the RemPid process. In this move it also assigns the global rem pid variable, which
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pl_1 create!

pl_1 create O e

p2_2_create!

p2_2 create 0 e

tas ()

Figure 25: An example StartUp UPPAAL process.

decides on what pid the RemPid shall work. Last, when moving from iSDL_Reset to
iSDL _Inactive we reset variables to the values that UPPAAL would have given them at
system start up.
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sdl_start?
t1_set_time:= 0,
pids[ps_offspring] := self, iSDL _Inactive
pids[parent] := pids[ps_parent]

sdl_pid_remove!

otherval:= 0, rem_pid := self

t1_set_time:=0,
pids[offspring] :=0,
iSDL_Start pids[sender] := 0

iSDL_RemPid

g_stop!

q_start!
iSDL_StopQueue

sdl_stop!

iSDL_Stop

Figure 26: Start and stop principle. Excerpt from an sdlprocess.
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Pid removal. The RemPid UPPAAL process is a global process that is responsible for

removing all references to a given pid. Every pid variable (local and global) that holds the
pid value of a stopped instance has to be replaced with a zero. By doing this the pid is
forgotten by the system outside the instance and can be reused if that instance is restarted.
To make this work feasible for Rem Pid all pid values are stored in an array called pids[].
In the places where pids are used, instead of holding a pid we hold an index to the pid
array where the pid value is stored. There are two exceptions to this rule, sender queues
and the expl_to. A sender queue is a queue of sender pids corresponding to a queue of
signals that a Queue UPPAAL process holds. When a signal is sent that signal is associated

with the pid of the sender. For every PI in the system there will be a sender queue that
the RemPId has to go through.

rem_pid != expl_to

wat ©)

sdl_pid_remove?
count:=0

e- 2 2 0 _sender_gueue_end

rem_pid == expl_to

expl_to :=0
count == 20

RemPids count:=0

count < 16,

pids[count] != rem_pid
count := count + 1

count < 16,
pids[count] == rem_pid
ids[count] := 0,

(F:)ourEt = cc])unt +1 P2.2.0_sender_queue_do
count < 20,

count == 16 p2_2_0_sender_queue[count] != rem_pid
count := 0 count := count + 1

count < 20,

p2_2_0_sender_queue[count] == rem_pid

p2_2_0_sender_queue[count] :=0,
count := count + 1

RemPids end

count < 20,

pl_1_0_sender_queue[count] != rem_pid
count :=count + 1

pl_1 O_sender_queue_end
count == 20

pl_1 O_sender_queue do count:=0

count < 20,
pl_1_0_sender_queue[count] == rem_pid

pl_1_0_sender_queue[count] :=0,
count := count + 1

Figure 27: An example RemPid UPPAAL process.

An example of the Rem Pid UPPAAL process is shown in figure 27. The RemPid starts
in the Wait location. When an SDL-process synchronizes over the sd1_pid remove channel
it also gets the pid to remove in the rem pid data storage. In the RemPids location it
exchanges all values equal to rem pid to zero in the pids[] array. When we have reached
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the end of the array, in this case pids[16], we break and transit the control to a location
called RemPids_end. Futher, we do the same cleaning for the sender queues of the
processes pl and p2. Lastly, we clean the expl_to value if necessary. All these stages are
done using committed locations as to have no interruption while doing this cleanup.
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4.4 Signal analysis

In this section we present the analysis of implicit signal paths. This analysis gives the
information for the PSO to know the set of possible destination PSIs for each output
action of an SDL-process. There are three parameters for each output: signal, via and to,
where via and to are optional. If these parameters are exactly the same for two outputs,
then they share the same set of possible destination PSTs. QOur task is to follow signal
routes and channels, with the constraints given by the parameters (signal, via, to) to get a
set of PSTs.

The algorithm is basically to follow every signal route from the process set to the process
set it is connected to, or to the environment, where we follow the channel(s)® that the
signal route is connected to, or in the case where the block is typebased and the signal route
is connected to a gate, we follow the channel(s) connected to that gate. When following a
channel into a block we can also have more than one continuation. Absence of specification
is treated liberally. This means that if no signal routes/channels are specified, then there
are implicit signal routes/channels to all possible destination, in the block/system where
signal routes/channels are omitted. There is still no possibility for a channel/signal route
to go from the environment to the environment, which is forbidden in SDL. During the
algorithm, we must respect the following constraints.

e The output’s signal name must exist in every with clause of the passed gates, signal
routes and channels for the direction in which the signal is traveling. If no with clause
is specified then the signal is allowed to pass any signal route, channel or gate.

e The optional via constraint specifies a list of names which shall match with a name
of a gate, a signal route or a channel, in the given orderS. This is, when we encounter
a situation where there are more than one possible continuation path and the first in
the via list matches one of them, then we must use that and only that continuation.
After this we have used the first via constraint which is then removed from the list
for that continuation. If we reach a process set and the list isn’t empty then that
process set is not a possible receiver for the output.

e The optional to constraint specifies the name that a receiving process set must have.
If we reach a process set that does not have the specified name then that process set
is not a possible receiver for the output.

An outlined version how each level is searched is in Appendix E.

SWe allow multiple channels to be connected to multiple signal routes, this feature belongs to SDL-92.
5At the time of writing, sd12xta can only handle a single via name
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5 Process conversion

In this section, a solution to the problem of converting an SDL,;, process to an UPPAAL
process, is presented. There are two distinct areas in an SDLy, process, namely the
declaration area, and the process body.

5.1 Process’ declarations

A process’ declarations consists of both definitions and declarations.

Gate definitions If the process defined as a type based process then it might include
gate definitions. In that case all gate definitions must come before any other definition.
There is no output generated that corresponds directly to gates. In the conversion program
gates are used to restrict the possible receivers of output signals. This is done in the signal
analysis.

Signal definitions Signals internal to the process can be defined. A signal defined inside
a process (type) definition can not be sent to another process (not even if the receiving
process has the same type). The number of parameter must be the same as when the signal
is used. Each instance of a signal definition, generates a unique UPPAAL constant with the
signal’s name as identifier.

Timer definitions In SDL,, timers cannot have any parameters which makes the timer
definition a pure declaration. An UPPAAL instance of the template timer shown in Figure 31
will be generated for each instance of the process definition. The timer has a variable
set_time that is set to the duration for the timer when it is used. This value is initiated
with zero if the timer is not assigned a value at its definition.

Pid declarations SDL,;, defines a datatype pid that corresponds to SDL’s PId type.
Pid is the only datatype that can be used to store process ids. The reason for this is the
reuse of process id (see Section 4.3). All pid storages are global in the run-time system.
The convertion program makes a slot in the global pids[] array. This is of no concern to
the SDL,;, writer.

Xta declarations SDL,, provides all variables in UPPAAL’s xta-format to be declared.
All declarations will be local to the UPPAAL process implementing the SDL-process in the
run-time system. See Appendix C.

5.2 Process body

A process body contains state definitions. The states have input definitions that are
followed by transitions. A state can also have save constructs. Transitions are built up by
action statements and/or terminating statements.
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5.3 States, Inputs and Queue interaction

SDL’s SDL-process and queue interaction. In SDL control communication is done
by events. The outlined schema is slightly simplified.

The SDL-process communicates with its queue with a Next-Signal event. As argument
to the Next-Signal event the SDL-process sends the save-set of its current state. The
save-set is the set of signals the process not shall handle until it has changed its state.

The queue now communicates with the SDL-process using a Input-Signal event. In this
event the queue passes the next signal on the queue that is not an element of the save-set.
If the queue is empty or if the queue only holds signals included in the save-set, then this
communication must wait until a new signal arrive to the queue.

After receiving the Input-Signal event the SDIL-process directs its flow of control to
the transition corresponding to the <state, signal> pair. If no such pair exists or if the
condition to take the transition is not fulfilled then the signal is discarded.

The SDL-process and queue interaction translated to UPPAAL. In our implemen-
tation we strive to make the queue as simple as possible. Our queue is generic: all instances
use the same UPPAAL template, parameterized for that instance. We have chosen to let the
SDL-process make all the decisions by itself, treating the queue as a passive object. For
each state we let the SDL-process synchronize with its queue with a nextsig!. When the
queue performs the associate nextsig? it also puts the next signal in a global variable (that
is only used in this communication). In the next step, the SDL-process decides what to do
with the signal. Until now nothing has happened in the queue.

e If there is an input construct for this <state, signal> pair and the construct either
has no enabling condition or the enabling condition is true, then the SDL-process
synchronizes with the queue with an accceptsig!, copying the sender and optional
parameters for the signal. When the queue gets the corresponding acceptsig? it knows
that the signal is regarded as consumed and moves the untested signals forward in its
local queue, filling the gap of the consumed signal. The SDL-process now enters the
selected transition.

e If there is a save construct for this <state, signal> pair, then the SDL-process and
queue synchronize with a savesig. At the savesig!, the SDL-process goes directly
back to the state where it came from, ready to do a new nextsig!. The queue moves
its pointer to the next signal in the queue.

o If the signal is neither accepted nor saved then the signal must be discarded. This
is also done with an implicit input transition where the SDL-process moves back to
the same state again ready for a new nextsig!. In that move it synchronizes with the
queue with an acceptsig! telling the queue to remove the signal as if it was consumed.
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test:=test+1
savesig?

test == next,
cont == true
ig?
contsig next I= test 0 Wait_accept
cont := false, nextsig?
p_signal := queueltest], acceptsig?
mover:=test

pids[p_sender]:=self

pids[p_sender]:=sender[test],
p_params[0] := params[0 + test *

start?

glive[self] :=true

Move

mover +1 == next
mover+1 = next

Inactive
sender[next-1] := 0,
queue[next-1]:=0, sender[mover] := sender [mover+1],

stop? params[next-1+0] := 0, queue[mover] := queue[mover +1],
next:= next -1, params[mover+0] := params[mover+1+0],
mover := mover +1

glive[self] :=false

explsig?
self == expl_to
sender[next] := pids[expl_sender],
params[next+0] := expl_params|[0],
queue[next] := expl_signal

implsig?
sender[next] := pids[ps_sender],
params[next+0] := ps_params[0],
queue[next] := ps_signal

e NewlImpl

timersig?

sender[next] := self,
queuelnext] := tq_signal

next:=next+1,
cont:=true

params[next+0] := 0,
tg_signal := 0

pids[expl_sender] := 0,
expl_params|[0] := 0,
expl_signal := 0,
expl_to:=0

pids[ps_sender] := 0,
ps_params|[0] := 0,
ps_signal := 0

s generated for one parameter.

: The Queue UPPAAL proces

Figure 28
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SDL_getChange

acceptsig!

savesig!
in_signal != Coin10, in_signal == Disp1
in_signal != Coin100,

in_signal != Coin50,

in_signal != CoinX,

in_signal != Disp1, nextsig!
in_signal != Disp2,

in_signal = t1

savesig!
in_signal == Disp2

SDL_Save test_getChange

acceptsig!
in_signal == Coin50

in_signal == t1

in_signal == CoinX

. acceptsig!
acceptsig!

in_signal == Coin100

acceptsig!

task15

task17

task16 timer OnGetChange

Figure 29: Excerpt of input in UPPAAL.

CoinX Coin100 1 Coin50 Disp1, Disp2

Figure 30: Excerpt of input in SDL.
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5.4 Control Structure Translate

Translation. Because of the existing shortcuts in the state and input area there is no
one-one mapping between a declared <state, input> pair and a transition. There are a few
pitfalls:

e State names can appear in multiple state constructs. A state’s input is the sum of
the inputs where the state name appears.

e Asterisks can be used in the state construct. This means that the inputs of that
state construct is for all of the SDL-process states. It is also possible to declare a list
of states that shall not be concerned by the state construct.

e Multiple states can be declared in a state construct. This means that the inputs to
that state construct is for the mentioned state names.

o Asterisks can be used in the input construct meaning that all signals, except those
declared elsewhere for that state name, take the transition that follows in the con-
struction.

o Asterisks can also be used in the save construct, meaning that all signals, except those
declared elsewhere for that state name, are included in the save-set.

For each state we generate:

<state> -> <state_test> {
sync nextsig!;

}

Now the queue has put the signal to test in in_signal and the parameters in in_params[0..N-1]
for N parameters. The sender has been set to the sender pid of the signal, of course in-
directed to the pids array. Now we set our doNotDiscard-set to ().

For every input signal in the state we generate:

<state_test> -> <first_state_of_transition> {
guard in_signal == <actual_signal>
[,<guard_on_input>]; // inside [] optional
sync acceptsig!;
assign <input_par#_var> := in_params[ <input_par#> ]; // for every param #

}

when generating this we also add the signal to the doNotDiscard-set.
For every save signal in the state we generate:

<state_test> -> <state> {
guard in_signal == <actual_signal>;
sync savesig!;

}
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when generating this we also add the signal to the doNotDiscard-set.
When we see an asterisk in an input or a save construct we remember it until we have gone
through all constructs.

Finally we have three alternatives: discard, save, or run transition for non-mentioned
signals. Discard means that we have neither a save nor an input asterisk construct for this
state. In this case we accept the signal without doing any transition:

<state_test> -> <state> {
guard in_signal != <signal>; // for all signals in doNotDiscard-set.
sync acceptsig!;

}

If we have a save asterisk we generate:

<state_test> -> <state> {
guard in_signal != <signal>; // for all signals in doNotDiscard-set.
sync savesig!;

}

And last if we have an input asterisk

<state_test> -> <first_state_of_transition> {
guard [<guard_on_input>,] // inside [] optional
in_signal != <signal>; // for all signals in doNotDiscard-set.
sync acceptsig!; // no params in asterisk-input

}

5.5 Transitions

A transition is a sequence of actions optionally ending in a termination statement. The
transition specifies the action(s) to be taken for an input in a state. Remember how states
and inputs can be combined see 5.3. In case a transition not ending in a terminator state-
ment (that is a nextstate, join or stop construct) the default is to return to the same state
as before. What’s complicating things is the decision statement. The decision statement is
forking the execution flow in multiple paths, that possibly merge and continue after the end-
decision. Each possible path is itself a transition. This means that following a transition,
not ending in a terminator statement, we shall either continue after the last enddecision or
return to the same state as before. The latter is complicated by the fact that a join can
take an execution flow from one transition to another coming from a different state. This is
why we have to keep track of our current state. We change the state when we encounter a
nextstate construct. Our solution to the problem is to add a join to the enddecision if we
are in a decision construct, else we add a nextstate -, meaning just go to same state. The
nextstate - will generate a jump to the state_choser UPPAAL location. From there we
go to our current SDL-state which we can decide from examine our iSDL_State variable.
BNF for the transition can be found in Appendix B.12.
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5.6 Best/Worst Case Execution Time

Best Case Execution Time (BCET) and Worst Case Execution Time (WCET) are not a
part of SDL. They are added to SDL;;, to make the UPPAAL run-time system aware of
the execution time. It is optional to use BCET/WCET in an SDL,4, specification. If they
are not used UPPAAL can only verify the system re timers.

The syntax in SDL,y, for this extension is [BCET,WCET], where BCET and WCET
is a constant integer. The translation of this is done in three steps.

e At each incoming edge, the UPPAAL clock c is assigned to zero.

e Add an invariant ¢ < WCET to the location. This will force the control to stay in
the location maximally W CFET time units.

e Guard each outgoing edge with a ¢ > BCET condition. This will hinder the control
to move from the location before BCET time units have elapsed.

The translations of any SDL,y, actions will all include this addition if a BCET/WCET
pair is specified.

5.7 Label

A label is nothing else than a named point in the execution path where it is possible to
join branches. A label is not an SDL action. In the translation we generate an UPPAAL
location for the label because it simplifies the translation and makes the generated UPPAAL
code more easy to read. Whenever we encounter a “join label” action we simply add an
edge to the label location. The code generated by a label is:

<label location> -> <next location> {

}

The <label location> is urgent so it takes no execution time in UPPAAL. The BNF for
the label construct can be found in Appendix B.13.

5.8 Output

An output is an SDL action to send signals to other processes. The output construct
consists of an output keyword followed by a signal identifier with optional parameters
inside parentheses. The parameters depending on how the signal is defined. The to and
the via constructs can be used to constrain the possible receivers of the signal. Section 2.10
describes the SDL’s output construct and Section 4.2 describes explicit and implicit signal
delivery. Section 4.4 describes how outputs are analysed and how the possible receivers are
determined.
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Explicit output. With explicit output the pid of the receiving process instance is known.
In this case the we generate a synchronization with the Expl process (explained in Figure 21
and Section 4) using the sdl_explicit channel.

<output location> -> <next location> {
sync sdl_explicit!;
assign expl_signal:= <signal>,
expl_to := pids[<pid>],
expl_params[#] := <param#>, // for all params
pids[expl_sender] := self,

The variables expl_signal, expl_to, expl_params[], and pids[] are all global. The
Expl process discards the signal if there is no process instance with pid expl_to.

Implicit output. With implicit output we do not know the pid of the receiving process.
Happily all signal analysis is already done and the implementation is expressed in the PSO
process for the process set. The synchronization is named after the output. The via <via>
and the to_<to> suffixes are optional. Each unique output has its own synchronization.
The synchronizations used in the output constructs are parameters to the UPPAAL template
for the SDL-process and the PSO process.

<output location> -> <next location> {
sync output_<signal>_via_<via>_to_<to>!; // via and to optional
assign pso_signal:=<signal>,
pso_params [#] := <param #>,
pids[pso_sender] := self;

The variables pso_signal, pso_params[], and pids[] are global, but in the synchro-
nization the PSO process copies them and stores them locally.

5.9 Task

In 8DL;t, a task is identical to an UPPAAL assign. This means that there is no need to
convert anything in an SDL,;, task. There is one exception to this, namely the automated
indirection of the pid type.

Generated xta code looks like:

<task location> -> <next location> {
assign <task goes here as is>;

}
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5.10 Create and stop

The create and stop constructs is part of the Dynamic handling of processes concept 4.3.
In this section we show what we generate for the SDL-process.

SDL’s create semantic. A create constuct consists of a the create keyword and a
identifier of a process set. The create construct creates a new process instance in the
specified process set. It is not possible to start a process instance without any connection
to the SDL structure. After creation the offspring variable will hold the pid of the newly
started process or zero if no process has been started. The latter can happen when there
is a maximum number of processes declared for the process set.

Create in SDL;y,.- In SDL,i, each create construct is analysed, so the process-set
referred is known at generation time. The generated code for a create construct.

<create location> -> <next location> {
sync <create ps sync>!;
assign <ps offspring> := offspring,
pids[<create ps parent>] := self;

We synchronize with the PSI process of the process set where the new process shall
be created. This process are referred to as PSI_c for know. Here we do a little trick to
transfer exchange pids between the creating and the created process instances. We assign
the PSI_c’s variable for offspring purpose with the created pids offspring variable. The
offspring variable is an index to the global array pids[] where the process keeps its SDL
offspring value. Now the PSI_c knows where to assign the pid of the created process
instance. We also assigning the PSI_c’s variable for parent transfer to the creating process
pid, namely self. Notice that this variable, as it is a pid variable is located in the pid[]
array.

SDL’s stop semantic. In SDL stop is the end of the execution for the process instance.
It dies and can never be reborn. All explicit signals for this pid will be discarded.

Stop in SDL;;,.  When stopping a process instance in SDL;¢, we have some clean up
to do due to the reuse of pids and UPPAAL processes. Section 4.3 describes the dynamic
creation and deletion of processes in SDL;,. In Figure 26 shows the xta code of the clean
up. The generate of each stop construct is

<stop location> -> iSDL_Stop {
}
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5.11 Decision

As discussed in the Transition Section 5.5, the decision construct is an important part of
the flow control. In this section we focus on decision itself. There is a variety of valid
decision constructs. We show how the question and answer parts can be combined in a
semantically correct way. The decision is built up of a question (the head) and answers
(the body).

Semantic rules for decision. Rules:
e A question must have at least two answers.
e Answers must be mutually exclusive and should not overlap.

e One, and only one, answer may be an else answer, which is the complement of all
other answers.

e The question and the answers or range conditions of the answers must either be of
the same sort or informal text.

e If the question is of any type, then all answers must be empty and no else answer
can be used.

Decision using any question. The any question can be used with empty answers. It
is a way to express non-determinism in SDL. It look like this:

decision any;
(): <transition 1>
(): <transition 2>

(): <transition N>
enddecision;

Every transition must have equal chance to be taken. This case is very simple to generate
in UPPAAL. We simply omit the guards for all answers. UPPAAL’s model checker will check
all possible continuations. The translation of the any variant is:

<decision location> -> <transition n> {

}

Decision using boolean question. A boolean question makes the decision into an if
statement. The answers to a boolean question can only be true or false. In SDL true
and false are of the predefined type bool. In SDL;, true and false can only be used in
decision answers for boolean questions. The boolean (value) type is usually represented in
UPPAAL as an integer value with range 0..1 denoted int [0,1]. SDL,;, predefines true and
false as 1 and 0 respectively. The boolean question is an <IGuard>;, or a variable of type
int[0,1]. The latter will be transformed to vaiable == 1. Two examples of a boolean
decision:
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decision x > 23;
(true):

<true transition>
(false):

<false transition>
enddecision;
decision y; // y is boolean - int[0,1]
(true):

<true transition>
else:

<y is not true transition>
enddecision;

The translation is always on the form ezpr; rel expry where rel includes !=. When the
answer is true we have the guard expr; rel exprs, obviously. For the false answer we do
the inverted relation expri rel;,, expre. Where rel;,, is defined as:

< - >=
> - <=
<= = >
>= — <
== - =
| = - ==

The generate for a boolean decision is:

<decision location> —-> <transition true> {
guard <Exprl> <rel> <Expr2>; // true statement
}
<decision location> -> <transition false> {
guard <Exprl> <relinv> <Expr2>; // true statement
}

This is not the simplest way the false statement, but the most tasteful. It is of course
possible to generate the guard (< expr >71:0) == 0 as we do in the else case.

Decision using value question. When the question is an <IEzpr>;,, each answer
contains one or more value ranges. Logical or cannot be expressed in UPPAAL in other
ways than with multiple transitions. We do a little trick here. Again we map the range
conditions to 1 or 0 depending on whether the condition is true. Now by summing up the
values and checking against 0 we know if the branch should be taken or not.

First we show how each type of <range> is transformed. For question <IFEzpr; >y, the

answers are transformed as follow:
<rel> <IEzpro>i, = (<IEzpri> <rel> <IExpro>,71:0)

(
<IEzpro> —  (<IEzpri1>, == <IEzpro>47 1:0)
<IEzpro, >q:<IExpro,>1, — (<IExpri>i, >= <IEzpra, >47 1:0)
* (<IEzpri>t, <= <IEzprg,>47 1:0)
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For the example

decision <Expril> ;
(2,4:8,>10):

<transition 1>
(<2):

<transition 2>
(else):

<else transition>
enddecision;

We generate:

<decision location> -> <transition 1> {
guard (<Expril> == 2 7 1 : 0)
+ ((<Expri> >= 471 : 0)*(<Expri><=871: 0))
+ (<Expri> > 10 71 : 0) != 0;
}
<decision location> -> <transition 2> {
guard (<Exprl> <2 7 1 : 0) != 0;
}
<decision location> -> <else transition> {
guard (<Expri> == 2 7 1 : 0)
+ ((KExpri> >=4 7 1 : 0)*(<Expri> <=8 7 1 : 0))
+ (<Expri> > 10 7 1 : 0)
+ (<Expri> <2 7 1 : 0) == 0;
}

SDL,ta does not check whether ranges overlap. If they do, the decision becomes non-
deterministic. This solution guarantees that the else branch is not taken when an other is
possible.

5.12 Set/reset of timers

SDL timers are discussed in Section 2.12. In SDL,;, a timer a always set to expire a
duration from now. The SDL,y, specification writer must not include the SDL keyword
now as an argument to set. Both the set construct and the reset construct generates a
synchronization to the timer with the name given as parameters to the construct.

Set. For a set we generate:

<set location> -> <next location> {
sync <timer>_set!;
assign <timer>_set_time:= <set expr>;

}
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If the set is specified with only the timer as argument, then the <timer>_ set_time will
not be assign anything at this point but at start up of the SDL-process.

Reset. For a reset we generate:

<reset location> -> <next location> {
sync <timer>_set!;

}

time == set_time
timersig!
pids[tq_sender] :=pid,
tg_signal:=timer

reset?

Test

Figure 31: The T'vmer UPPAAL process.

5.13 Nextstate

The nextstate construct is a way for the specification writer to change state of the SDL-
process. The translation of this is simply to move the control to the UPPAAL location
representing that SDL state. For the cases where a transition not ending in a termination
statement and for cases where we shall go to the same state without knowing (by the
transition) what state we came from. We must have edges to all possible SDL states. We
have chosen to make one such UPPAAL location called iSDL_State_choser and we use a
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variable iSDL_State to keep track of next state. This makes it possible to always go to
the iSDL_State_choser location whenever a transition is done. If no nextstate ends the
transition, then we still know were to go by the variable iSDL_State.

The generated code for a nextstate construct.

<nextstate location> -> iSDL_State_choser {
assign iSDL_State := <State>_Val; \\ not when ‘‘nextstate -7’
}

5.14 Join

As join has the function of goto in ordinary programming languages and we generate a
loction with name label when we encounter a label. The translation of join is simple.
The generated code for a nextstate construct.

<join location> -> <label> {

}
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6 Brief example

In this section we make a brief example of an SDL,;, system to show how the program
works in practice. The full SDL,;,-code can be seen in Appendix F.

6.1 SDL,, representation

system s channel chl;
signal s1(int), s2(int),
ackl(int), ack2(); exchanger
[ack1] chl [s1]
k1
block b1 [s1] block b2 [ack1] signalroute sri, sr2;
srl srl signal s2(int), ack2(int);
signalroute sri;
sl
[ack1] [s1]
gl
92 myreceiver
mysender x:exchanger | [ack2] [S2]

Figure 32: The SDL system.

System s In Figure 32 we can see the system’s highest abstraction level. We have the
system s which has no connection to the environment as SDL,, forbids such connection.
The system has two blocks b1 and b2, which are connected with the channel chl. Channel
chl conveys signal sl from bl to b2, and signal ackl from b2 to bl. There are definitions
for signals s1, s2, ackl, and ack2 at the system level. There is also a definition for channel
chl and a definition for process type exchanger. Figure 32 shows also the inside of block
bl and b2.

Block b1 Inside block bl there is a process mysender and a signal route srl defined. The
signal route connects the process mysender and the outer channel chl. Signal route srl
conveys signal ackl to the mysender process from the block’s environment and signal s1
in the opposite direction. Signal route srl’s behaviour matches the behaviour of channel
ch1 which is a must in this case, because no other signal route is connected to the channel.

Block b2 Inside block b2 there are two processes mysender and x, where process x is
declared based on the type exchanger. There are also two signal routes defined srl and
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sr2. Signal route srl conveys signal sl from the environment, where it is connected to
channel chl, to process = via gate g1, and also signal ackl in the opposite direction. Signal
route sr2 conveys signal s2 from process z via gate g2 to the process myreceiver, and also

signal ack2 in the opposite direction.

ack2(val2) gate g1 ?r?tv\\:\i"::]hasczléz'
gate g2 in with s1;

out with ack1;
dcl int vall;
dclint val2;
dcl int times := 0;
pid senderl;

Waitl

sl(vall)

ackl(val2)
to senderl

[t

senderl := sender [1,2]

o

O getsig:

times:= times+1

s2(vall)
>3

Ig

Figure 33: The xchanger process type.

Process type exchanger In Figure 33 we can see the SDL state chart of the process type
exchanger. Process type exchanger has two states Waitl and Wait2. When it starts it
goes to state Waitl.

At Waitl it ignores all inputs besides signal s1. When it got an input s1 with argument
vall it performs a task which takes one to two time units and saves the current sender
value to remember the pid of the sender. At the decision it ramdomly selects one of two
paths. In the first path the variable times is incremented and then a test is done if times
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is greater then three. If times is greater then three it joins at label getsig, else it waits for
next signal in the same state. The second path sends the signal s2 with the argument vall
as it just received and change state to Wait2.

At Wait2 it ignores all inputs besides signal ack2. After receiving an ack2 signal it
sends an ackl signal to the process with pid senderl as it saved earlier. The argument
val2 is passed from signal ack2 to signal ackl.

_

%d? labell: dcl const secretval 3;
dcl in otherval,
timer t1;
sl(secretval)
set(10, t1)
@D
t1 ackl(otherval)

Figure 34: The SDL sender process.

Process mysender In Figure 34 we can see the SDL state chart of the process mysender.
The process mysender has only one state, namely Wait. It starts with a label called labell
(not shown in the figure), then it sends a signal s1 with secretval as argument, sets its
t1 timer so it expires ten time units from now and lastly goes to state Wait. This is the
initialization of the process. At state Wait it can receive a signal ackl, then it is pleased
and stops. If the two time units elapses before any ackl signal has arrived, then the timer
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expires and the process joins [abell and does the initialization again.

dcl const mysecretval 1,
dcl int secretval;
Wait dcl int[0,1] done :=0;

H

s2(secretval)

done =1 [1,5]

ack2(mysecretval)

Figure 35: The SDL receiver process.

Process myreceiver In Figure 35 we can see the SDL state chart of the process myreceiver.
The process myreceiver has one state called Wait. At startup it goes directly to the Wait
state. When it receives an s2 signal it performs a task that takes one to five time units
and assigns one to the variable done. The process continues and sends out an ack2 signal,
futher it stops its execution.

60



6.2 The UpPPAAL result
In this section we present the UPPAAL run-time SDL-processes for the SDL processes in-
troduced in the previous section. The full output can be seen in Appendix G.

iSDL_Start
q_start! sdl_start?
pids[ps_offspring] := self, iSDL_Inactive
nextstate0 pids[parent] := pids[ps_parent]
iSDL_State :=wait1_Val vall:= 0,
val2:= 0,
times:= 0,

pids[offspring] :=0,
pids[sender] := 0

O iSDL_State choser

iSDL_State == waitl_Val

iSDL_State == wait2_Val

iSDL_Reset

sdl_pid_remove!
rem_pid := self

in_signal !=s1
nextsig!

acceptsig!

in_signal != ack2
acceptsig!

nextsig!

iSDL_RemPid

SDL_Save test_waitl

in_signal == s1
acceptsig!
. SDL_Save test_wait2 q_stop!

c:=0,
vall := in_params[0]
in_signal == ack2
acceptsig!

c>=1
pids[sender1]:=pids[sender] val2 := in_params[0] iSDL_StopQueue
iSDL_State :=wait2_Val
outputl sdl_stop!
iSDL_Stop
times:=times+1
stiop0

output0
sdl_explicit!
expl_signal:=ack1,
expl_to := pids[sender1],
expl_params[0] := val2,
pids[expl_sender] := self

((times>3? 1: 0))
output_s2_via_g1!

pso_signal:=s2,
pso_params|[0] := vall,
pids[pso_sender] := self

nextstate2

nextstatel

Figure 36: The exchanger UPPAAL process.

In Figure 36 we can see the result of the translation

The exchanger process in UPPAAL.
of the myreceiver process. The exchanger process includes three examples of constructs

not seen in the earlier processes. Firstly, at location task0 a task is performed with a pid
value. The task is usually a simple assign, but as ths is a pid assignment it is done to
the pids[] array with the assigned variable as index. Secondly, at location decision0 an
any-decision is performed. The outgoing answers are always empty for an any question.
Thirdly, at location outputl an explicit output is preformed. The addressed process is the

process with pid equal to the value of the senderl variable.
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labell iSDL _Inactive
sdl_start?
t1_set_time:=0,
Q output2 pids[ps_offspring] := self, otherval:= 0,
t1_set_time:= 0,

pids[parent] := pids[ps_parent]
pids[offspring] :=0,
pids[sender] := 0

output_s1!

pso_signal:=s1,
pso_params[0] := secretval,
pids[pso_sender] := self

iSDL_Reset

sdl_pid_remove!
rem_pid := self

tl_set!
tl_set_time:=10

iSDL_RemPid

iSDL_State :=wait_Val
q_stop!

iSDL_State_choser

iSDL_StopQueue

iSDL_State == wait_Val

SDL_wait

nextsig!

acceptsig!

in_signal = ack1, sdl_stop!
in_signal !=t1
in_signal == t1 SDL_Save test_wait
- iSDL_Stop

in_signal == ackl
acceptsig!

acceptsig!

= in_params[0]

Figure 37: The sender UPPAAL process.

The mysender process in UPPAAL. In Figure 37 we can see the result of the trans-
lation of the mysender process. After activation the SDL initialization begins at location
iSDL_Start. We recognize the label labell, the output for signal s1, timer #1 that is set
to two time units, and the nextstate Wait. At nextstate the variable 1SD L _state is set to
a value representing state Wait. At the location 1SDL_state it can only go to the Wait
state. At state Wait the process can accept signal sl and timer ¢1 as input. If timer ¢1
expires, then the process comes to a join and goes to labell. If the process gets a signal
ackl, then the process comes to a stop location and goes from there to the iSDL_Stop

location wherefrom clean up begins.
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sdl_start? SDL_I nactive

pids[ps_offspring] := self,
pids[parent] := pids[ps_parent]

q_start!

nextstate5 secretval:= 0,
done:=0,
pids[offspring] :=0,
pids[sender] := 0

(O)isDL_Resst

sdl_pid_remove!
rem_pid := self

iSDL_RemPid
nextsig!
q_stop!
SDL_Save_test_wait
in_signal == s2 iSDL_StopQueue
acceptsig!
c:=0,
secretval := in_params|[0]
task2 sdl_stop!
iSDL_Stop
output3
output_ack?2!
pso_signal:=ack2,
pso_params[0] := mysecretval,
pids[pso_sender] := self
stop2

Figure 38: The receiver UPPAAL process.

The myreceiver process in UPPAAL. In Figure 38 we can see the result of the translation
of the myreceiver process. After activation the process goes directly to the state Wait.
This is done by the procedure to assign the 1S D L_state the value that represents the Wait
state and then go to the :SDL_State_choser location from where it must go to the location
representing the state Wait.

At state Wait, the process waits until it receives an s2 signal, then it outputs an ack2
signal. Notice that the s2 signal’s parameter assigns the variable secretval and that the
ack?2 signal is sent with the variable mysecretval as parameter. After the output the process
stops.

6.3 Using the verifier in UPPAAL

In UPPAAL there is a verifier where we can prove properties.

There are a few possibilities for proving the properties that we want the exchanger
example to have. Because all of the three processes mysender, myreceiver, and x are
determined to stop. We can prove that starting one leading to stop. We give the verifier,
for each process the query:
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<process>.iSDL_Start --> <process>.iSDL_Stop

Another possibility is to prove that a process stops is to modify it so it assigns a global
variable” when it is finished. For example if we assign <process>_done the value 1 at the
end of the process:

A<> <process1>_done == 1 and <process2>_done == 1 (etc..)

A< > means that there is always a possible path that leads to the property, i.e., in any
possible state, if we have no live locks, the property will hold in the future.

To prove that the example doing its work, we make mysender’s value otherval and
myreceiver’s value secretval global. Then we prove:

A<> otherval == 1 and secretval ==

This proves that the prcesses alway sometime in the future will have exchanged their values.
To make the verifier go (much) faster it is recommended to remove all locations after the
location 1SDL_Stop in the processes whenever there is no dynamic creation of processes.
In next version this will be done by the sd12xta program.
Figure 39 shows what it looks like in UPPAAL’s verifier.

"We cannot write queries in UPPAAL for local variables.
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Overview

= POj4<> otherwal == 1 and secretval == 3 [+]
Plla<> x_done == 1 [+]
P2[A<> sender_done == 1 |. Model| Check
P2(A<> receiver_done == 1 |. Insert
P4|A<> mysender_1_0.150L_5top |. Remove
PS|mysender_1_0.150L_5tart --> mysender_1_0.150L_5top |. Comments
PG|x_Z_0.i50L_5tart --» x_Z?_0.i30L_5top [+]
P7|myreceiver_3_0.15DL_Start --» myreceiver_3_0.150L_5tep (@

Query
W= otherval == 1 and secretwval == 3

Comment

Status

A mysender_L_U. o0l _stop o
Property is satisfied.

A< otherval == 1 and secretval ==

Property is satisfied. -

Figure 39: The UPPAAL verifier.
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7 Conclusion

7.1 Related work

e The IF[IF] project at Verimag, SDL specifications undergo several translations. The
resulting PROMELA representations is used with the SPIN model checker.

e Telelogic Tau SDL Suite is a commercial tool for graphically building of SDL system
and simulation of live performance [Tau].

e The SVE (System Verification System) tool developed at Siemens[Siemens]. Relied
on using BDD-based symbolic model checker.

e ATMTS, Algebraic Tools for Modelling Telecommunication Systems. Steggles’ group
at University of Newcastle UK, jointly with LMU Munich, Germany have done a
Formal Model for SDL Specifications based on Timed Rewriting Logic [ATMTS].

7.2 Future work

Configuration file. There should be a configuration file where the size of the queues and
maximum number of parameters can be set.

Default time consumption. An idea is to assign default time consumption per SDL 4,
construct. The user would only have to write exceptions.

Take care of buffer overflow. Buffer overflow in the queue should be detected. Today
we have no such detection.

Procedures and services. The procedure level is not included in SDL,,. It it possible
to expand SDL ¢, to do local procedure calls in a UPPAAL automaton using a stack for the
return “address”. The problem here is the same as with the queues, we can neither allow
unbounded nor dynamic size.

Delayed channels. It would be nice to have delayed channels, where delay could be in a
“flexible span”. This will unfortunately force us to only write fully specified systems. The
way we implement dynamic implicit behaviour will be impossible.

7.3 Summary

In this work we have described how it is possible to convert an SDL syntax to UPPAAL
preserving the characteristics of the environment an SDL process work in. We have also
added a way to express time comsumption for constructs in SDL,;, processes in order to
do an analysis of an SDL system, with both timers and execution time.
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A Differences between SDL-92 and SDL,;,

In this section we present the deviations in SDL,;, from SDL-92 and we suggest work-
arounds, where appropriate. This list shall be considered as an overview and not as a
complete deviation list. Appendix B and Appendix C defines SDL .

Channels Channels in SDL,;, cannot be delayed nor can any substructure be defined.
This two deviations makes it possible for us to use our run-time algorithm for implicit
communication between process sets described in Section 4.

Types We can only use the types that is included in UPPAAL. The newtype, generator,
and synonym can not be used in SDL,;,. Enumeration types can be simulated by
doing a const declaration of each element and when the type is used, then used an
int with range just enclosing the constant declared e.g. int [1,3] if the elements are
declared from one to three.

Virtual types Virual types are not included in SDL4,, so none of the keywords virtual,
redefined, or finalized can be used.

Process context parameters Process can not have parameters, so the fpar keyword
cannot be used. The fpar keyword cannot be used in any other context either.

Refinements Refinements of any kind cannot be done, so the atleast keyword cannot be
used in SDL 4.

Inheritance Inheritance is not included in SDL,;,, so the keywords inherits, and adding
are not used.

Global time In SDL,;, there is no absolut global time, all time is relative. Therefore do
we not have any now in the system. When setting timers we set the duration rather
than the exact time when the timer shall expire.

Environment interaction A system cannot communicate with its environment in SDL 4,.
This is a decision that has been made with consideration to UPPAAL. Our sugges-
tion is to build the system in a substructure block and connect it to a simulated
environment. This environment has to be specified and connected to the original
system.

Procedures The procedure concept is not implemented in SDL;,. This is regarded as
high priority future work.

Packages Packages is no implemented in SDL;4,, so the use keyword cannot be used.

Priority input Priority input is no implemented in SDL;,, so the priority keyword
connot be used.

View Variables in SDL;s, cannot be shared among processes in the way view works in
SDL.
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Select The SDL select construct is not implemented in SDL4,.
Service The SDL service construct is not implemented in SDL,,.

Communication between a Process and its Queue The exchange of control signals
when a process communicates with its queue are not exactly the same in SDL;4, as
in SDL. In Section 5.3 we describe our solution.

Macrodefinition Macros can not be defined in SDL,,.

Added BCET and WCET We have introduced the possibility to assign time-constraints
on a process’ actions. In Section 5.6 we describe this feature.

System type In SDL;, the system specication cannot be type based.
Multicast The SDL multicast via all is not implemented.

Continuous signals Continuous signals are not implemented in SDLy;,. They were
planned to be implemented (see Queue), but the enabling conditions were hard to
handle ... with the provided keyword.

Enabling conditions

Spontaneous signals Spontaneous signals, with keyword none are not implemented in
SDL -
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B BNF of SDL,,

B.1 BNF

In the Backus-Naur Form, a terminal is either indicated by not inclosing it within angle
brackets (that is, the less-than sign and greater-than sign, <and>) or it is one of the
two representations <name> or <character string>. Note that the two special terminals
<name> or <character string> may also have semantics stressed and defined below.

The angle brackets and enclosed word(s) are either a non-terminal symbol or one of the
two terminals <name> or <character string>. Syntactic categories are the non-terminals
indicated by one or more words enclosed between angle brackets. For each non-terminal
symbol, a production rule is given. For example

<block reference> := block <block name> referenced ;
A production rule for a non-terminal symbol consists ot the non-terminal symbol at the
left-hand side of the symbol ::=, and one or more constructs, consisting of non-terminal

and/or terminal symbol(s) at the right-hand side. For example, <block reference> and
<block mame> in the example above are non-terminals; block, referenced and ; are
terminal symbols.

Sometimes the symbol includes an underlined part. This underlined part stresses a
semantic aspect of that symbol, e.g. <block name> is syntactically identical to name, but
semantically it requires the name to be a block name.

At the right-hand side of the ::= symbol several alternative productions for the non-
terminal can be given, separated by vertical bars (|). For example,
<referenced definition> := <block definition>

| <block type definition>

| <process definition>

| <process type definition>

| <block substructure definition>

expresses that a <referenced definition> is either a <block type definition>, a <process
definition>, a <process type definition> or a <block substructure definition>.

Syntactic elements may be grouped together by using curly brackets ({ and }). A curly
bracketed group may contain one or more vertical bars, indicating alternative syntactic
elements. For example,

<block interaction area> := { <block area> | <channel definition area> }+

Repetition of curly bracketed groups is indicated by an asterisk (x) or plus sign (+).
An asterisk indicates thet the group is optional and can be futher repeated any number of
times; a plus sign indicates that the group must be present and can further repeated any
number of times. The example above expresses that a <block interaction area> contains at
least one <block area> or <channel definition area> and may contain more <block area>s
and <channel definition area>s.

If syntactic elements are grouped using square brackets([ and ]), then the group is
optional. For example,

<valid input signal set> := signalset [<signal list>] ;
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expresses that a <walid input signal set> may, but need not, contain <signal list>.

B.2 Global
<sdl specification> ::= <GDecl>y,
<system definition> { <referenced definition> }*
<referenced definition> := <block definition>

| <block type definition>

| <process definition>

| <process type definition>

| <block substructure definition>

B.3 Signal definition

<signal definition> = signal <signal definition item> { ,<signal definition item> }* ;
<signal definition item> = <signal name> [<sort list>]
<sort list> 2= ( <param type>y { ,<param type>y }* )

B.4 Communication syntax

<channel definition> := channel <channel name> 8

<channel path> [<channel path>] *

endchannel [<channel name>] ;
<channel path> ::= from <channel endpoint> to <channel endpoint> with <signal list> ;
<channel endpoint> ::= { <block identifier> | env } [via <gate identifier>]

Rule for channel gate. <gate identifier> must be specified if and only if:

1. <channel endpoint> denotes a connection to a <typebased block definition> in which
case the <gate identifier> must be defined directly in the block type for that block,
or

2. env is specified and the channel is defined in a block substructure of a <block type
definition> in which case the <gate identifier> must be defined in this block type.

<signal route definition> := signalroute <signal route name>
<signal route path> [<signal route path>|

<signal route path> ;= from <signal route endpoint> to <signal route endpoint>
with <signal list> ;

<signal route endpoint> ::= { <process identifier> | env } [via <gate identifier>]

Rule for signal route gate. <gate identifier> must be specified if and only if:

1. <signal route endpoint> denotes a connection to a <typebased process definition> in
which case the <gate identifier> must be defined directly in the process type for that
process, or
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2. env is specified and the signal route is defined in a block type of a <block type
definition> in which case the <gate identifier > must be defined in this block type.

B.5 Referenced structures

<number of process instances> = ( <NAT>; [, <NAT>4, ])
<process reference> ;= process <process name>
[<number of process instances>] referenced ;
<process type reference> ::= process type <process type name> referenced ;
<block reference> = Dblock <block name> referenced ;
<block type reference> ::= block type <block type name> referenced ;
<block substructure reference> := substructure <block substructure name> referenced ;

B.6 System definition

<system definition> := system <system name> ;

{ <entity in system> }+

endsystem [<system name>] ;
<entity in system> 1= <block definition>

| <block reference>

| <typebased block definition>

| <channel definition>

| <signal definition>

| <signal list definition>

| <block type reference>

| <block type definition>

| <process type definition>

| <process type reference>

test for <channel definition> see B.4.
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B.7 Block and block type definition

<block definition> ::= Dblock <block name> ;
{ <channel to route connection> | <entity in block>}*
[<Dblock substructure definition>
| <block substructure reference>]
endblock [<block name> ] ;
<block type definition> ::= Dblock type <block type name> ;
{<gate definition>}*
{<entity in block>}*
[<block substructure definition>
| <block substructure reference>]
endblock type [<block name> | ;

<typebased block definition> := block <typebased block heading> ;

<typebased block heading> = <block name> [<number of block instances>] :
<block type name>

<number of block instances> == ( <NAT>;, )

<entity in block> = <signal definition>

| <signal list definition>

| <process definition>

| <process reference>

| <typebased process definition>
| <signal route definition>

| <process type definition>

| <process type reference>

| <block type definition>

| <block type reference>

<channel to route connection> := connect <channel identifiers>
and <signal route identifiers> ;
<channel identifiers> = <channel identifier> {, <channel identifier> }*

B.8 Substructure

A substructure is like a system, it has channels that connect blocks. It is also the content
of a partitioned block.
<block substructure definition> := substructure [<block substructure name>] ;
{ <entity in system> | <channel connection> }*
endsubstructure [<block substructure name>] ;
if the <block substructure name> after the keyword substructure is omitted, it is the
same as the name of the enclosing <block definition> or <block type definition>.
<channel connection> ::= connect <channel identifiers> and <subchannel identifiers>
<subchannel identifiers> := <channel identifiers>
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B.9 Process and process types

<process definition> ;= process <process name>'? [<number of process instances>;
{ <entity in process> }*
[<process body>]!!
endprocess [<process name>] ;

<process body> n=  <start> { <state> }*

<typebased process definition> := process <typebased process heading> ;

<typebased process heading> ;= <process name> [ <number of process instances> | :
<process type name>

<process type definition> ;1= process type <process type name>;

{ <gate definition> }*

{ <entity in process> }*

| <process body>12

endprocess type [<process type name>] ;
<gate definition> = gate <gate name> <gate constraint> ; [ <gate constraint> ;]
<gate constraint> #= {in|out } '3[ with <signal list> ]

B.10 Declarations in process

<entity in process> ::= <signal definition>
| <signal list definition>1*
| <variable definition>
| <timer definition>

<variable definition> z= { del <sdl decl>y,

| pid <pid name> { , <pid name> }* ; }*
<timer definition> ;= timer <timer definition item> {, <timer definition item> }* ;
<timer definition item> := <timer name> ' [ := <CExpr>y,)

B.11 States, Inputs and Queue interaction

<start> = start; <transition>
<state> = state <state list>;
{ <input part>
| <save part>
| <spontaneous transition>
| <continuous signal> }* 16
[endstate <state name>;]
<state list> »= {<state name>{,<state name>}*}
| <asterisk state list>
<asterisk state list> := <asterisk> [( <state name> {, <state name>}* ) |
< asterisk> n= ¥
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<input part>17
<input list>
<asterisk input list>
<stimulus>

<save part>
<save list>

<asterisk save list>

<spontaneous transition>

<continuous signal>
<enabling condition>

B.12

<transition>

Transition

<transition string>
<action statement>
<8DL;4, execution time>
<action>

<terminator statement>
<terminator>

= input <input list>; [<enabling condition>] <transition>

<asterisk input list> | <stimulus>{ ,<stimulus> }*
<asterisk>

= {<signal identifier> | <timer identifier>}

[( <SDLyvariable> {, <SDL y,variable> }* ) |

;= save <save list>;
m= { <signal list>

| <asterisk save list> }

= <asterisk>

;= input none; [<enabling condition>] <transition>
::= provided <IGuard>;,; <transition>

= provided <IGuard>;g;

{ <transition string> [<terminator statement>] }
| <terminator statement>

{ <action statement> }+

[<label>] <action> [<SDLy, execution time>];
[ <BCET®> , <WCETY> ]

<task>

| <output>

| <create request>

| <decision>

| <set>

| <reset> 20

[<label>] <terminator>;

<nextstate>

| <join>

| <stop> 2

Refer to 5.6 for the BCET/WCET.

B.13 Label

<label> =

<connector name> :
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B.14 Output

<output>
<output body>

<destination>

<pid expression>

<via path>
<via path element>

;= output <output body>
= <signal identifier> [<actual parameters> |
{, <signal identifier> [<actual parameters> | }*
[to <destination>] [via ?? <via path>]
;= <pid expression>
| <process identifier>
| this
= self
| sender
| parent
| offspring
| <pid identifier>?®
1= <via path element> {,<via path element>}*
::= <signal route identifier>
| <channel identifier>
| <gate identifier>

B.15 Task
<task> = task<task body>
<task body> 2=  <IAssign List>y,
| <informal text>
<informal text> := ' <charstring> "’

B.16 Create and

<create request>
<create body>
<stop>

stop

::= create <create body>
== {<process identifier> | this} 2*
= stop
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B.17 Decision

<decision>
<decision body>

decision <question> ; <decision body> enddecision
{ <answer part> <else part> }
| { <answer part> {<answer part>}+ [<else part>] }
<answer part> (<range condition>?® ):[<transition>]
<else part> = else:[<transition>]
<question> 1= any
| <IExpr>y,
| <IGuard>y,
<range condition> = <range> {, <range>}*
<range> = <IExpr>y @ <IExpr>y,
| <IExpr>,
| <REL>;, <IExpr>y,
| I = <IExpr>y,
| true
| false

Semantic rules for decision. Rules:

e A question must have least two answers.
e Answers must be mutually exclusive and should not overlap.

e One, and only one, answer may be an else answer, which is the complement of all
other answers.

e The question and the answers or range conditions of the answers must either be of
the same sort or informal text.

e If the question is of any type. Then all answers must be empty and no else answer
can be used.

B.18 Set/reset of timers

<set> = set <set statement> { ,<set statement>}
<set statement> = ([ <IExpr>,,| <timer identifier> )
<reset> = reset <timer identifier>

B.19 Nextstate

<nextstate> = mnextstate { <state identifier> | <dash nextstate> }
<dash nextstate> := <hyphen>
<hyphen> = =
B.20 Join
<join> = join <connector name>
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C Rules related to UrPPAAL used in SDL,,

<IAssign List>;26 == <IAssign>, {,<IAssign> }*
<IAssign>y, 2= <ID>4, = <IExpr>4,
<IExpr>, = <ID>¢

| <ID>, [<IExXpr>y4)

| <NAT >4,

| - <IExpr>y,

| ( <IExpr>t, )
| <IExpr>, <OP>4, <IExpr>y,
| ( <IGuard>y, ? <IExpr>4, ¢ <IExpr>y, )

<IGuard>y, p= <IExpr>;, <REL>;, <IExpr>;,
| <IExpr>¢, != <IExpr>y,

<REL>y, = L <=>=>|==

<OP>¢, = +|-1*[/

<VIL>,, 2= <VID>; {,<VID>,, }*

<VID>,, = <ID>y

| <ID>, := <CExpr>,

| <ID>4, [<CExXpr>t,]
<CExpr>¢, 2= <NAT>4,

| <ID>¢4

| ( <CExpr>¢, )

| <CExpr>;, <OP>;, <CExpr>y,

| — <CExpr>y,
<param type>y, 2= int | int [<NAT>;, , <NAT>, |
<LDecls>;, = { <LDecl>y, ;}*
<LDecl>, n= {int <VIL>,

| int [<CExpr>4, , <CExpr>y, | <VIL>y,
| const <ID>;, <CExpr>y, }
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D Usage of the conversion program
The conversion program can be downloaded from the World Wide Web at location
http://www.docs.uu.se/ hessel /sd12xta/.
The invocation is:
sdl2xta <input-SDL;:-file> <output-.xta-file>

The output .xta file can be opened in UPPAAL. The user must unfortunately place the
locations him- /herself because of the lack of graphical information in the .xta format.
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E The signal analysis algorithm

In this section we traverse the signal analysis algorithm step by step. We start from an
output from one process set and find all possible receiver process sets. We have the triple
<signal, via, to> that we bring with us all the time.

Signal is the name of the outputted signal that every signal route, channel or gate on
our path must convey for our path to be valid. If the conveyed signal set is not specified
then all signals can be conveyed. This is referred to as the signal rule.

Via, if it is specified is a list?” of names that must match with gates, signal routes or
channels in the given order. This is checked by removing names after they are seen. For
a valid path all elements must have been removed. This is referred to as the via rule. If
the first element match one of the possible gates, signal routes or channels in the scope, all
other paths are invalid. We say that a path partially fulfills the via rule, if it is not invalid
as described above.

To, if it is specified must be the name of the receiving process set. This is referred to
as the to rule.

E.1 Output in a process set

We start in the process set instance. If the process is typebased and have gates and if a via
list is specified we check if the first via name is equal to one of the gates. If it is, then we
remove the name for futher via processing and pass the gates name to the next step. The
next step in the algorithm is to call “Out from a process in a leaf block”.

E.2 Out from process in a leaf block

We are now in a leaf block and we follow an output from a process.

No declared signal routes. If there are no signal routes declared each of the other pro-
cess sets is a receiver and is added to the result set if the to and the via rules are
fulfilled.

We also call the “Out from block in a system or a substructure” algorithm step for
finding paths to process sets in other blocks. We add the result to the result set.

There exist declared signal routes. If there exist declared signal routes in the block
then we want to find those signal routes that have an endpoint in the process set
where we came from and the signal rule is fulfilled. If we have a non empty via list
and one of the signal routes’ name are equal to the first via element, then we follow
only that signal route.

For each valid signal route we find we look at the other end point as when there didn’t
exist any signal routes. There are two different cases even here.

#"Only one via name can be specified in SDLyt, at the time of writing.
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Endpoint goes to a process set. The other endpoint goes to a process set, it is added
to the result set if the to and the via rules are fulfilled.

Endpoint goes to the environment. The other endpoint goes to the environment we
call the “Out from block in a system or a substructure” algorithm step. If the block is
typebased and the signal route is specified to go via a specific gate that gate is passed
to the next step. If the block is not typebased and there is a connect for the signal
route with a outer channel this channel is passed to the next step. Also the via rule
must be partially fulfilled.

E.3 Out from block in a system or a substructure

We are now in a system or in a substructure and are following a signal path from a known
block, eventually we also know the name of the gate.

No declared channels. If channel declarations are omitted then we check all possibilities.
The result set is what we add up from calling the following algorithm steps: “Out
form a substructure in a partitioned block” (if this is not the system specification)
and for the blocks found in this node “Into a partitioned block” or “Into a leaf block”
depending on if the block is a partitial block or a leaf block.

There exists channel declarations. In case there are channel declarations valid chan-
nels must:

e have one endpoint at the block where we came from,
e be connected to the gate passed to this algorithm step (if a gate is passed),

fulfill the signal rule,
partially fulfill the via rule.

Now we look at the other endpoint. If the other endpoint is a block then we call one
of the algorithm steps “Into a partitioned block” or “Into a leaf block” depending on
if the block is a partitial block or a leaf block. If the channel we follow is connected to
a gate, the gate is passed to the algorithm step. If the other endpoint goes upwards
the hierarchy i.e. to the environment of the system or substructure, then the “Out
of substructure in partitional block” algorithm step is called. If the channel we are
following connects to a outer channel we must pass that value to the step.

E.4 Out of substructure in partitional block

A partitioned block, has neither any process sets nor any signal routes, it has only a
substructure. We call the “Out from block in a system or a substructure” algorithm step.
If this step was called with a channel name we pass the name on.

E.5 Into a partitioned block

A partitioned block has only a substructure. This step is only conveying the name of the
outer channel that it possibly was called with to the “Into a substructure” algorithm step.
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E.6 Into a substructure

In this step we may have a outer channel name to find a connection for with an internal
channel, if the substructure has channels. We also know that we have to go down the
hierarchy because a channel is not allowed to go from the environment to the envirionment.

No declared channels. If channel declarations are omitted then the signal can possibly
go to any of the blocks in the substructure. For each block we call, depending on if
the block is a partitioned block or a leaf block, the “Into a leaf block” or the “Into a
partitioned block” algorithm step.

There exist channels. If there exist channels, then valid channels must:

e have one endpoint of the channel is connected to the environment,

fulfill the signal rule,

partially fulfill the via rule,

e must be connected to the eventual outer channel passed to this step.
For each valid channel we call the block at the other endpoint. Depending on if the
block is a partitioned block or a leaf block, the “Into a leaf block” or the “Into a

partitioned block” algorithm step is taken. As parameters we pass the gate name if
the channel is connected to the block via a gate and the name of the channel.

E.7 Into a leaf block

When following a signal into a leaf block. We eventually have as parameters the connecting
outer channel or the gate where the channel connected the block.

No declared signal routes. If no signal route is declared in the block, then all process
sets that fulfill the o and the via rule are accepted as receivers.

There exist signal routes Process sets are accepted as receivers if they are the endpoint
of a valid signal route. Valid signal routes must:
e be connected to the environment with one endpoint,

e be connected to the eventual outer channel, given as parameter to the algotithm
step,

e be connected to the environment via an eventual block gate, given as parameter
to the algotithm step,

o fulfill the signal rule,
o fulfill the via rule,
o fulfill the to rule,
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F The full SDL,;,~code for the exchanger example

//
// Anders Hessel
// Sender to receiver example

system s;
signal s1(int), ackl(int);

block bi;
process mysender referenced;
signalroute srl from mysender to env with si;
from env to mysender with ackl;
connect chl and sri;
endblock;

block b2;
signal s2(int), ack2(int);
process type exchanger referenced;
process X : exchanger;
process myreceiver referenced;
signalroute srl from x via gl to myreceiver with s2;
from myreceiver to x via gl with ack2;
signalroute sr2 from x via g2 to env with ackl;
from env to x via g2 with si;
connect chl and sr2;
endblock;

channel chl from bl to b2 with si;
from b2 to bl with ackil;
endchannel;
endsystem;

process type exchanger;
gate gl out with s2; in with ack2;
gate g2 in with sl1; out with ackil;
dcl int valil;
dcl int val2;
dcl int times := 0;
pid senderl;

start;
nextstate waiti;
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state waitl;
input si(vall);

task senderl := sender [1,2];

decision any;
O:
getsig:

output s2(vall) via gi;

nextstate wait?2;

O:

// ooops lost signal
task times := times + 1;

decision times;
(>3):
join getsig;
else:
nextstate -;
enddecision;
enddecision;

state wait2;
input ack2(val2);
// never loose ack
output ackl(val2) to
stop;
endstate;
endprocess type;

process mysender;

dcl const secretval 3;
dcl int otherval;
timer t1;

start;

labell
output sl(secretval);
set (10, t1);
nextstate wait;

state wait;
input ackl(otherval);
stop;
input ti;
join labell;

senderi;
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endprocess;

process myreceiver;
dcl const mysecretval 1;
dcl int secretval;
dcl int[0,1] done := O;

start;
nextstate wait;
state wait;
input s2(secretval);
task done := 1 [1,5] ;
output ack2(mysecretval);
stop;
endprocess;

G The full UprrPAAL .xta-code for the exchanger example

Indentation is done after generation.

// UPPAAL xta-code generated by
// Anders Hessel’s sdl2xta tool version 0.91a
// 1ISD Datasystem AB and Uppsala University, IT

const true 1;

const false O;

const expl_sender 1;

urgent chan explsig, sdl_explicit, sdl_pid_remove;
int[0,4] rem_pid, expl_to;
int[0,6] expl_signal;

int expl_params[1];

int[0,1] qlive[4];

int [0,4] pids[21];

// Generating globals

const s1_1 1;

const ackl_2 2;

const s2_3 3;

const ack2_4 4;

urgent chan mysender_1_create;
urgent chan mysender_1_start;
urgent chan mysender_1_stop;
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urgent chan mysender_1_psisig;

urgent chan mysender_1_implsig;

const mysender_1_ps_parent_index_2 2;
const mysender_1_pso_sender_index_3 3;
const mysender_1_psi_sender_index_4 4;
urgent chan mysender_1_0_t1_set;
urgent chan mysender_1_0_t1_reset;

int mysender_1_0O_t1l_set_time;

const mysender_1_0_t1_signal_val_b5 5;
const mysender_self_1 1;

const mysender_parent_index_5 5;
const mysender_offspring_index_6 6;
const mysender_sender_index_7 7;
urgent chan mysender_1_0_nextsig;
urgent chan mysender_1_0_savesig;
urgent chan mysender_1_0_acceptsig;
urgent chan mysender_1_O_timersig;
urgent chan mysender_1_0O_contsig;
urgent chan mysender_1_0_qg_stop;

urgent chan mysender_1_0_qg_start;

urgent chan x_2_create;

urgent chan x_2_start;

urgent chan x_2_stop;

urgent chan x_2_psisig;

urgent chan x_2_implsig;

const x_2_ps_parent_index_8 8;

const x_2_pso_sender_index_9 9;

const x_2_psi_sender_index_10 10;

urgent chan myreceiver_3_create;

urgent chan myreceiver_3_start;

urgent chan myreceiver_3_stop;

urgent chan myreceiver_3_psisig;

urgent chan myreceiver_3_implsig;

const myreceiver_3_ps_parent_index_11 11;
const myreceiver_3_pso_sender_index_12 12;
const myreceiver_3_psi_sender_index_13 13;
const senderl_14 14;

const x_self_2 2;

const x_parent_index_15 15;

const x_offspring_index_16 16;

const x_sender_index_17 17;

urgent chan x_2_O_nextsig;

urgent chan x_2_0_savesig;

urgent chan x_2_0_acceptsig;
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urgent chan x_2_O_timersig;

urgent chan x_2_0O_contsig;

urgent chan x_2_0_qg_stop;

urgent chan x_2_0_q_start;

const myreceiver_self_3 3;

const myreceiver_parent_index_18 18;
const myreceiver_offspring_index_19 19;
const myreceiver_sender_index_20 20;
urgent chan myreceiver_3_O_nextsig;
urgent chan myreceiver_3_0O_savesig;
urgent chan myreceiver_3_0O_acceptsig;
urgent chan myreceiver_3_O_timersig;
urgent chan myreceiver_3_0_contsig;
urgent chan myreceiver_3_0_qg_stop;
urgent chan myreceiver_3_0_qg_start;
urgent chan mysender_1_output_s1i;
int [0,21] mysender_1_ps_offspring;
int [0,6] mysender_1_pso_signal;

int [0,6] mysender_1_psi_signal;

int mysender_1_pso_params[1] ;

int mysender_1_psi_params[1] ;

int [0,6] mysender_1_0_in_signal;
int [0,6] mysender_1_0_tq_signal;
int [0,4] mysender_1_0_sender_queue[20] ;
int mysender_1_0_param[1] ;

urgent chan x_2_output_s2_via_gi;
int [0,21] x_2_ps_offspring;

int [0,6] x_2_pso_signal;

int [0,6] x_2_psi_signal;

int x_2_pso_params[1] ;

int x_2_psi_params[1] ;

int [0,6] x_2_0_in_signal;

int [0,6] x_2_0_tq_signal;

int [0,4] x_2_0_sender_queue[20] ;
int x_2_0_param[1] ;

urgent chan myreceiver_3_output_ack?2;
int [0,21] myreceiver_3_ps_offspring;
int [0,6] myreceiver_3_pso_signal;
int [0,6] myreceiver_3_psi_signal;
int myreceiver_3_pso_params[1] ;

int myreceiver_3_psi_params[1] ;

int [0,6] myreceiver_3_0_in_signal;
int [0,6] myreceiver_3_0_tq_signal;

int [0,4] myreceiver_3_0_sender_queue[20] ;
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int myreceiver_3_O_param[1] ;

process StartUp

{
state myreceiver_3_create_0, mysender_1_create_0, Last, First,
x_2_create_0;
commit myreceiver_3_create_0, mysender_1_create_0, x_2_create_0;
init First;

trans First -> mysender_1_create_0{
sync mysender_1_create!;

},

mysender_1_create_0 -> x_2_create_0{
sync x_2_create!;

},

x_2_create_0 -> myreceiver_3_create_0{
sync myreceiver_3_create!;

},

myreceiver_3_create_0 —> Last{};

}

process Queue(

const self;

urgent chan nextsig, acceptsig, savesig, contsig;
urgent chan implsig, timersig, start, stop;

const p_sender, ps_sender;

int[0,6] p_signal, ps_signal, tq_signal;

int ps_params[1], p_params[1];

int[0,4] sender[20])

int [0,6] queue[20];

int [0, 20] test;

int [0, 20] next;

int [0, 20] mover;

int params[20];

int[0,1] cont;

state NewTimer, New, Wait, Inactive, Wait_accept, NewImpl, Move, NewExpl;
commit NewTimer, New, NewImpl, NewExpl;

urgent Wait_accept, Move;

init Inactive;

trans Wait -> Wait_accept{

guard next != test; sync nextsig?;
assign p_signal := queue[test],
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pids[p_sender] :=sender [test],
p_params[0] := params[0 + test *1];
},
Wait_accept -> Move{
sync acceptsig?;
assign mover:=test;
},
Wait -> NewImpl{
sync implsig?;
assign sender[next] := pids[ps_sender],
params [next+0] := ps_params[0],
queue [next] := ps_signal;
},
NewImpl -> New{
assign pids[ps_sender] := 0,
ps_params[0] := 0,
ps_signal := O;
},
Wait -> NewExpl{
guard self == expl_to;
sync explsig?;
assign sender[next] := pids[expl_sender],
params [next+0] := expl_params[0],
queue [next] := expl_signal;
},
NewExpl -> New{
assign pids[expl_sender] := 0,
expl_params[0] := O,
expl_signal := 0,
expl_to := 0;
},
Wait -> NewTimer{
sync timersig?;

assign sender[next] := self,
queue [next] := tq_signal;
},
NewTimer -> New{
assign params[next+0] := 0,
tg_signal := 0;
},

New —> Wait{
assign next:=next+1,
cont:=true;

1,
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Inactive -> Wait{
sync start?;
assign qlive[self] :=true;
},
Wait —> Inactive{
sync stop?;
assign qlive[self] :=false;
},
Move -> Move{
guard mover+1l != mnext;
assign sender[mover] := sender [mover+1],
queue [mover] := queue[mover +1],
params [mover+0] := params[mover+1+0],
mover := mover +1;
},
Wait_accept —-> Wait{
sync savesig?;
assign test:=test+l;

1,

Move -> Wait{

guard mover +1 == next;
assign sender[next-1] := 0,
queue [next-1]:=0,
params [next-1+0] := 0,
next:= next -1,
test := 0;

1,

Wait -> Wait{
guard test == next, cont == true;
sync contsig?;
assign cont := false,
pids[p_sender] :=self;

};

}

process Timer(

urgent chan set, reset;
urgent chan timersig;
int set_time;

const timer;

int[0,6] tq_signal)
{

clock c;

int time;
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state Unset, Set{c <= 1}, Test;
urgent Test;
init Unset;

trans Unset -> Test{
sync set?;

assign time:=0;

1,

Set -> Test{

guard c == 1;

assign time := time+1;
1,
Test —-> Unset{

guard time == set_time;
sync timersig!;

assign tq_signal:=timer;
1,
Test -> Set{

guard time<set_time;
assign c:= 0;

1,

Set -> Unset{

sync reset?;

1,

Set -> Test{

sync set?;

assign time:=0;

};

}

process Expl{

state Have_signal, Wait;
urgent Have_signal;

init Wait;

trans Wait -> Have_signal{
sync sdl_explicit?;

},

Have_signal -> Wait{

guard qglive[expl_to] ==false;
assign expl_to :=0,
expl_signal :=0,
expl_params[0] := 0;

},



Have_signal -> Wait{
sync explsig!;

};

}

process RemPid

{
int count := 0;
state RemPids_end, x_2_0O_sender_queue_end, RemPids, x_2_0_sender_queue_do,
mysender_1_0_sender_queue_do, myreceiver_3_0_sender_queue_end, Wait,
myreceiver_3_0_sender_queue_do, mysender_1_0_sender_queue_end;

commit RemPids_end, x_2_0O_sender_queue_end, RemPids, x_2_0_sender_queue_do,
mysender_1_0_sender_queue_do, myreceiver_3_0_sender_queue_end,
myreceiver_3_0_sender_queue_do, mysender_1_0_sender_queue_end;

init Wait;

trans Wait -> RemPids{
sync sdl_pid_remove?;
assign count := 0;

1,

RemPids -> RemPids{

guard count < 21,
pids[count] !'= rem_pid;
assign count := count + 1;

},

RemPids -> RemPids{
guard count < 21,
pids[count] == rem_pid;
assign pids[count] := 0,
count := count + 1;

1,

RemPids -> RemPids_end{
guard count == 21;
assign count := 0;

1,

RemPids_end -> mysender_1_0_sender_queue_do{},

mysender_1_0_sender_queue_do -> mysender_1_0_sender_queue_do{
guard count < 20,
mysender_1_0_sender_queue[count] != rem_pid;
assign count := count + 1;

1,

mysender_1_0_sender_queue_do -> mysender_1_0_sender_queue_do{

guard count < 20,
mysender_1_0_sender_queue[count] == rem_pid;
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assign mysender_1_0_sender_queue[count] :=0,
count := count + 1;
},
mysender_1_0_sender_queue_do -> mysender_1_0_sender_queue_end{
guard count == 20;
assign count := 0;
1,
mysender_1_0_sender_queue_end -> x_2_0_sender_queue_do{},

x_2_0_sender_queue_do -> x_2_0_sender_queue_do{
guard count < 20,
x_2_0_sender_queue[count] != rem_pid;

assign count := count + 1;

1,
x_2_0_sender_queue_do -> x_2_0_sender_queue_doq{
guard count < 20,

x_2_0_sender_queue[count] == rem_pid;
assign x_2_0_sender_queue[count] :=0,
count := count + 1;
},
x_2_0_sender_queue_do -> x_2_0_sender_queue_end{
guard count == 20;
assign count := O;
},

x_2_0_sender_queue_end -> myreceiver_3_0_sender_queue_do{},
myreceiver_3_0_sender_queue_do -> myreceiver_3_0_sender_queue_do{
guard count < 20,
myreceiver_3_0_sender_queue[count] != rem_pid;

assign count := count + 1;

},
myreceiver_3_0_sender_queue_do —-> myreceiver_3_0_sender_queue_doq{

guard count < 20,

myreceiver_3_0O_sender_queue[count] == rem_pid;
assign myreceiver_3_0O_sender_queue[count] :=0,
count := count + 1;
1,
myreceiver_3_0_sender_queue_do —> myreceiver_3_0_sender_queue_end{
guard count == 20;
assign count := 0;
1,

myreceiver_3_0O_sender_queue_end -> Wait{
guard rem_pid == expl_to;
assign expl_to :=0;

1,

myreceiver_3_0_sender_queue_end -> Wait{
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guard rem_pid != expl_to;
};
}

process PSI(

const maxval;

urgent chan sdl_create, sdl_start, sdl_stop;
urgent chan psisig, implsig;

int [0,21] offspring)
{

int[0,1] started :=0;

state Create, Have_signal, Wait;
commit Create;

urgent Have_signal;

init Wait;

trans Wait -> Wait{
sync sdl_stop?;

assign started := started - 1;
1,
Wait -> Wait{

guard started == maxval;

sync sdl_create?;

assign pids[offspring] := 0;
1,
Wait -> Createf{

guard started < maxval;

sync sdl_create?;

1,
Create -> Wait{

sync sdl_start!;

assign started := started +1;
1,
Wait -> Have_signal{

guard started > O;

sync psisig?; 1},
Have_signal -> Wait{

sync implsig!;

};

X

process mysender (

const self;
const parent, offspring, sender;
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const pso_sender;

urgent chan sdl_start, sdl_stop;

int[0,21] ps_offspring;

const ps_parent;

// PidParam

// no local pids

// ExternalParam (non local signals)

const ackl, si;

const til;

// TimerParam (non local signals)

urgent chan ti_set, tl_reset;

int tl_set_time;

// OutSyncParam (output sync params)

urgent chan output_si;

// CreateSyncParam (create sync params)

// PI -> Queue and Timer -> Queue

urgent chan nextsig, acceptsig, savesig, contsig, q_start, g_stop;
// param holders in and out (out is for the PS)
int in_params [1], pso_params [1];

// signal holders in and out (out is for the PS)
int[0,6] in_signal, pso_signal)

clock c;

const secretval 3;

int otherval;

const wait_Val O;

int[0,1] iSDL_State;

state iSDL_Start, iSDL_Inactive, join2, iSDL_State_choser, iSDL_RemPid,
labell, SDL_wait, setO, iSDL_Reset, SDL_Save_test_wait, iSDL_Stop,
output2, iSDL_StopQueue, stopl, nextstate4;

urgent iSDL_Start, iSDL_Inactive, join2, iSDL_State_choser, iSDL_RemPid,
labell, setO, iSDL_Reset, iSDL_Stop, output2, iSDL_StopQueue, stopil,
nextstate4;

init iSDL_Inactive;

trans iSDL_Inactive -> iSDL_Start{
sync sdl_start?;
assign tl_set_time:= 0,
pids[ps_offspring] := self,
pids([parent] := pids[ps_parent];
},
iSDL_State_choser -> SDL_wait{
guard iSDL_State == wait_Val;
},
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SDL_wait -> SDL_Save_test_wait{
sync nextsig!;

1,

SDL_Save_test_wait -> stopl{
guard in_signal == ackl;
sync acceptsig!;
assign otherval := in_params[0];

1,

SDL_Save_test_wait -> join2{
guard in_signal == t1;
sync acceptsig!;

1,

SDL_Save_test_wait -> SDL_wait{
guard in_signal != ackl,
in_signal '= tl; sync acceptsig!;

3,

labell -> output2{},
output2 -> set0{
sync output_si!;
assign pso_signal:=sl,
pso_params[0] := secretval,
pids[pso_sender] := self;
1,
set0 -> nextstate4{
sync tl_set!;
assign tl_set_time:=10;
1,
nextstate4 -> iSDL_State_choser{
assign iSDL_State :=wait_Val;
1,
stopl -> iSDL_Stop{},
join2 -> labeli{},
iSDL_Start -> labellq
sync g_start!;

},

iSDL_StopQueue -> iSDL_RemPid{
sync g_stop!;

1,

iSDL_RemPid -> iSDL_Reset{
sync sdl_pid_remove!;
assign rem_pid := self;

1,

iSDL_Reset —-> iSDL_Inactived{
assign otherval:= 0,
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tl_set_time:= O,
pids[offspring] :=0,
pids[sender] := 0;
};
}

process exchanger(

const self;

const parent, offspring, sender;

const pso_sender;

urgent chan sdl_start, sdl_stop;

int[0,21] ps_offspring;

const ps_parent;

// PidParam

const senderi;

// ExternalParam (non local signals)

const ackl, ack2, sl, s2;

// TimerParam (non local signals)

// OutSyncParam (output sync params)

urgent chan output_s2_via_gi;

// CreateSyncParam (create sync params)

// PI -> Queue and Timer -> Queue

urgent chan nextsig, acceptsig, savesig, contsig, g_start, g_stop;
// param holders in and out (out is for the PS)
int in_params [1], pso_params [1];

// signal holders in and out (out is for the PS)
int[0,6] in_signal, pso_signal)

clock c;

int vall;

int val2;

int times:= 0;

const waitl_Val O;

const wait2_Val 1;

int [0,2] iSDL_State;

state taskl, taskO{c <=2}, nextstate3, nextstate2, iSDL_State_choser,
nextstatel, nextstateO, getsig, decisionl, decisionO, iSDL_StopQueue,
SDL_Save_test_wait2, joinl, joinO, SDL_Save_test_waitl, iSDL_RemPid,
outputl, outputO, iSDL_Reset, stopO, iSDL_Stop, enddecisionO,
iSDL_Inactive, SDL_wait2, SDL_waitl, iSDL_Start;

urgent taskl, nextstate3, nextstate2, iSDL_State_choser, nextstatel,
nextstate0, getsig, decisionl, decisionO, iSDL_StopQueue, joinl, joinO,
iSDL_RemPid, outputl, outputO, iSDL_Reset, stopO, iSDL_Stop,
enddecisionO, iSDL_Inactive, iSDL_Start;
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init iSDL_Inactive;

trans iSDL_Inactive -> iSDL_Start{
sync sdl_start?;
assign pids[ps_offspring] := self,
pids[parent] := pids[ps_parent];
1,
iSDL_State_choser -> SDL_waiti{
guard iSDL_State == waitl_Val;
1,
SDL_waitl -> SDL_Save_test_waitl{
sync nextsig!;
1,
SDL_Save_test_waitl -> taskO{
guard in_signal == si;
sync acceptsig!;
assign c¢:=0,
vall := in_params[0];
1,
SDL_Save_test_waitl -> SDL_waitil{
guard in_signal != si;
sync acceptsig!;
1,
iSDL_State_choser -> SDL_wait2{
guard iSDL_State == wait2_Val;
1,
SDL_wait2 -> SDL_Save_test_wait2{
sync nextsig!;

1,
SDL_Save_test_wait2 -> outputil{
guard in_signal == ack2;

sync acceptsig!;

assign val2 := in_params[0];
3,
SDL_Save_test_wait2 -> SDL_wait2{
guard in_signal != ack2;

sync acceptsig!;
3,

nextstate0 -> iSDL_State_choser{
assign iSDL_State :=waitl_Val;

},

task0 -> decisionO{

guard c >=1;
assign pids[senderl] :=pids[sender];
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},
decision0 -> getsig{},
getsig —> output0{},
outputO -> nextstatel{
sync output_s2_via_gl!;
assign pso_signal:=s2,
pso_params [0] := vall,
pids[pso_sender] := self;
},
nextstatel -> iSDL_State_choser{
assign iSDL_State :=wait2_Val;
},
decision0 -> task1{},
taskl -> decisionl{
assign times:=times+1;
},
decisionl -> joinO{
guard (times>37 1 : 0) != 0;
},
join0 -> getsig{},
decisionl -> nextstate2{
guard ((times>37 1 : 0)) == 0;
},
nextstate2 -> iSDL_State_choser{},
joinl -> enddecisionO{},
enddecision0 -> nextstate3{},
nextstate3 —-> iSDL_State_choser{},
outputl -> stop0{
sync sdl_explicit!;
assign expl_signal:=ackl,
expl_to := pids[senderi],
expl_params[0] := val2,
pids[expl_sender] := self;
},
stop0 -> iSDL_Stop{},
iSDL_Start -> nextstateO{
sync g_start!;
},
iSDL_Stop -> iSDL_StopQueue{
sync sdl_stop!;

3,

iSDL_StopQueue -> iSDL_RemPid{
sync g_stop!;

},
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iSDL_RemPid -> iSDL_Reset{
sync sdl_pid_remove!;
assign rem_pid := self;

1,

iSDL_Reset —-> iSDL_Inactived{
assign vall:= 0,

val2:= 0,

times:= 0,

pids[offspring] :=0,
pids[sender] := 0;

};

}

process myreceiver (

const self;

const parent, offspring, sender;

const pso_sender;

urgent chan sdl_start, sdl_stop;

int[0,21] ps_offspring;

const ps_parent;

// PidParam

// no local pids

// ExternalParam (non local signals)

const ack2, s2;

// TimerParam (non local signals)

// OutSyncParam (output sync params)

urgent chan output_ack2;

// CreateSyncParam (create sync params)

// PI -> Queue and Timer -> Queue

urgent chan nextsig, acceptsig, savesig, contsig, q_start, g_stop;
// param holders in and out (out is for the PS)
int in_params [1], pso_params [1];

// signal holders in and out (out is for the PS)
int[0,6] in_signal, pso_signal)

clock c;

const mysecretval 1;

int secretval;

int [0,1] done:= 0;

const wait_Val O;

int[0,1] iSDL_State;

state iSDL_Start, iSDL_Inactive, task2{c <=5}, iSDL_State_choser,
iSDL_RemPid, SDL_wait, iSDL_Reset, SDL_Save_test_wait, iSDL_Stop,
output3, stop2, iSDL_StopQueue, nextstateb;
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urgent iSDL_Start, iSDL_Inactive, iSDL_State_choser, iSDL_RemPid,
iSDL_Reset, iSDL_Stop, output3, stop2, iSDL_StopQueue, nextstateb;
init iSDL_Inactive;

trans iSDL_Inactive -> iSDL_Start{
sync sdl_start?;
assign pids[ps_offspring] := self,
pids[parent] := pids[ps_parent];
1,
iSDL_State_choser -> SDL_wait{
guard iSDL_State == wait_Val;
1,
SDL_wait -> SDL_Save_test_wait{
sync nextsig!;
1,
SDL_Save_test_wait -> task2{
guard in_signal == s2;
sync acceptsig!;
assign c:=0,

secretval := in_params[0];
},
SDL_Save_test_wait -> SDL_wait{
guard in_signal != s2;
sync acceptsig!;
},

nextstateb -> iSDL_State_choser{
assign iSDL_State :=wait_Val;
1,
task2 -> output3{
guard ¢ >=1;
assign done:=1;
},
output3 -> stop2{
sync output_ack2!;
assign pso_signal:=ack2,
pso_params[0] := mysecretval,
pids[pso_sender] := self;
1,
stop2 -> iSDL_Stop{},
iSDL_Start -> nextstatebq{
sync g_start!;
1,
iSDL_Stop -> iSDL_StopQueue{
sync sdl_stop!;
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},
iSDL_StopQueue -> iSDL_RemPid{
sync g_stop!;
1,
iSDL_RemPid -> iSDL_Reset{
sync sdl_pid_remove!;
assign rem_pid := self;
},
iSDL_Reset -> iSDL_Inactive{
assign secretval:= 0,
done:= O,
pids[offspring] :=0,
pids[sender] := 0;
};
}

process mysender_1_PS(
const pso_sender;
int[0,6] pso_signal;
int pso_params[1];
urgent chan output_si;
urgent chan x_2_psisig;
const x_2_sender;

int x_2_params[1];
int[0,6] x_2_signal)

state Got_output_sl, Wait, Clean;
commit Clean;

urgent Got_output_si;

init Wait;

trans Wait -> Got_output_si{
sync output_si7?;

1,
Got_output_sl -> Clean{

sync x_2_psisig!;

assign x_2_signal := pso_signal,
x_2_params[0] := pso_params[0],
pids[x_2_sender] := pids[pso_sender];
},
Got_output_sl -> Clean{

guard qlive[x_self_2] == false;
1,
Clean -> Wait{
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assign pso_signal := 0,
pso_params[0] := O,
pids[pso_sender] := 0;
};
}

process x_2_PS(

const pso_sender;

int[0,6] pso_signal;

int pso_params[1];

urgent chan output_s2_via_gi;
urgent chan myreceiver_3_psisig;
const myreceiver_3_sender;

int myreceiver_3_params[1];

int [0,6] myreceiver_3_signal)
{

state Wait, Got_output_s2_via_gl, Clean;
commit Clean;

urgent Got_output_s2_via_gi;
init Wait;

trans Wait -> Got_output_s2_via_gl{
sync output_s2_via_gl7?;

1,

Got_output_s2_via_gl -> Clean{
sync myreceiver_3_psisig!;

assign myreceiver_3_signal := pso_signal,
myreceiver_3_params[0] := pso_params[0],
pids[myreceiver_3_sender] := pids[pso_sender];
1},
Got_output_s2_via_gl -> Clean{
guard qlive[myreceiver_self_3] == false;
1,
Clean —> Wait{
assign pso_signal := 0,

pso_params[0] := O,
pids[pso_sender] := 0;
};
}

process myreceiver_3_PS(
const pso_sender;
int[0,6] pso_signal;
int pso_params[1];
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urgent chan output_ack?2;

urgent chan x_2_psisig;

const x_2_sender;

int x_2_params[1];

int[0,6] x_2_signal)
{

state Wait, Got_output_ack2, Clean;
commit Clean;
urgent Got_output_ack2;

init Wait;

trans Wait -> Got_output_ack2{
sync output_ack27?;

},

Got_output_ack2 -> Clean{
sync x_2_psisig!;

assign x_2_signal := pso_signal,
x_2_params[0] := pso_params[0],
pids[x_2_sender] := pids[pso_sender];
},

Got_output_ack2 -> Clean{
guard glive[x_self_2] == false;
},
Clean -> Wait{
assign pso_signal := 0,
pso_params[0] := O,
pids[pso_sender] := 0;
};
}

mysender_1_PSI := PSI( 1, mysender_1_create, mysender_1_start,
mysender_1_stop, mysender_1_psisig, mysender_1_implsig,
mysender_1_ps_offspring);

mysender_1_PS0:=mysender_1_PS(mysender_1_pso_sender_index_3,
mysender_1_pso_signal,

mysender_1_pso_params,

mysender_1_output_sl, x_2_psisig, x_2_psi_sender_index_10,
X_2_psi_params, x_2_psi_signal);

// GENERATE mysender_1_0

mysender_1_0 := mysender(mysender_self_1, mysender_parent_index_5,
mysender_offspring_index_6, mysender_sender_index_7,
mysender_1_pso_sender_index_3, mysender_1_start, mysender_1_stop,
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mysender_1_ps_offspring, mysender_1_ps_parent_index_2, ackl_2, si_1,
mysender_1_0_t1_signal_val_b5, mysender_1_0O_t1_set, mysender_1_0_t1_reset,
mysender_1_0_t1_set_time, mysender_1_output_sl, mysender_1_O_nextsig,
mysender_1_0_acceptsig, mysender_1_0_savesig, mysender_1_O_contsig,
mysender_1_0_qg_start, mysender_1_0_g_stop, mysender_1_0_param,

mysender_1_pso_params,
mysender_1_0_in_signal, mysender_1_pso_signal);

// GENERATE mysender_1_0 QUEUE

mysender_1_0_queue := Queue(mysender_self_1, mysender_1_O_nextsig,
mysender_1_0_acceptsig, mysender_1_0O_savesig, mysender_1_O_contsig,
mysender_1_implsig, mysender_1_O_timersig, mysender_1_0_qg_start,
mysender_1_0_qg_stop, mysender_sender_index_7,
mysender_1_psi_sender_index_4, mysender_1_0O_in_signal,
mysender_1_psi_signal, mysender_1_0_tq_signal, mysender_1_psi_params,

mysender_1_0_param, mysender_1_0_sender_queue) ;

// GENERATE mysender_1_0 TIMERS
mysender_1_0_t1 := Timer (mysender_1_0_t1_set, mysender_1_0_tl_reset,

mysender_1_O_timersig, mysender_1_0_t1l_set_time,

mysender_1_0_t1_signal_val_5, mysender_1_0_tq_signal);
// END GENERATE mysender_1_0

x_2_PSI := PSI( 1, x_2_create, x_2_start, x_2_stop,
x_2_psisig, x_2_implsig, x_2_ps_offspring);
x_2_PS0:=x_2_PS(x_2_pso_sender_index_9,

Xx_2_pso_signal,

x_2_pso_params,

x_2_output_s2_via_gl, myreceiver_3_psisig,
myreceiver_3_psi_sender_index_13, myreceiver_3_psi_params,
myreceiver_3_psi_signal);

// GENERATE x_2_0
x_2_0 := exchanger(x_self_2, x_parent_index_15, x_offspring_index_16,
x_sender_index_17, x_2_pso_sender_index_9, x_2_start, x_2_stop,
x_2_ps_offspring, x_2_ps_parent_index_8, senderl_14, ackl_2,
ack2_4, s1_1, s2_3, x_2_output_s2_via_gl, x_2_0O_nextsig,
x_2_0_acceptsig, x_2_0O_savesig, x_2_0O_contsig, x_2_0_qg_start,
x_2_0_qg_stop, x_2_0O_param, x_2_pso_params,
x_2_0_in_signal, x_2_pso_signal);

// GENERATE x_2_0 QUEUE
x_2_0_queue := Queue(x_self_2, x_2_O_nextsig, x_2_0_acceptsig,

x_2_0O_savesig, x_2_0_contsig, x_2_implsig, x_2_0_timersig,

105



x_2_0_qg_start, x_2_0_q_stop, x_sender_index_17, x_2_psi_sender_index_10,

x_2_0_in_signal, x_2_psi_signal, x_2_0_tq_signal, x_2_psi_params,
x_2_0_param, x_2_0_sender_queue);

// GENERATE x_2_0 TIMERS
// END GENERATE x_2_0

myreceiver_3_PSI := PSI( 1, myreceiver_3_create, myreceiver_3_start,
myreceiver_3_stop, myreceiver_3_psisig, myreceiver_3_implsig,
myreceiver_3_ps_offspring);
myreceiver_3_PS0:=myreceiver_3_PS(myreceiver_3_pso_sender_index_12,
myreceiver_3_pso_signal,
myreceiver_3_pso_params,
myreceiver_3_output_ack2, x_2_psisig, x_2_psi_sender_index_10,
X_2_psi_params, x_2_psi_signal);

// GENERATE myreceiver_3_0
myreceiver_3_0 := myreceiver(myreceiver_self_3, myreceiver_parent_index_18,
myreceiver_offspring_index_19, myreceiver_sender_index_20,
myreceiver_3_pso_sender_index_12, myreceiver_3_start, myreceiver_3_stop,
myreceiver_3_ps_offspring, myreceiver_3_ps_parent_index_11, ack2_4, s2_3,
myreceiver_3_output_ack2, myreceiver_3_O_nextsig,
myreceiver_3_0_acceptsig, myreceiver_3_0_savesig, myreceiver_3_0_contsig,
myreceiver_3_0_qg_start, myreceiver_3_0_g_stop, myreceiver_3_0_param,
myreceiver_3_pso_params,
myreceiver_3_0_in_signal, myreceiver_3_pso_signal);

// GENERATE myreceiver_3_0 QUEUE

myreceiver_3_0_queue := Queue(myreceiver_self_3, myreceiver_3_0O_nextsig,
myreceiver_3_0_acceptsig, myreceiver_3_0_savesig, myreceiver_3_0_contsig,
myreceiver_3_implsig, myreceiver_3_0O_timersig, myreceiver_3_0_g_start,
myreceiver_3_0_g_stop, myreceiver_sender_index_20,
myreceiver_3_psi_sender_index_13, myreceiver_3_0_in_signal,
myreceiver_3_psi_signal, myreceiver_3_0_tqg_signal,

myreceiver_3_psi_params, myreceiver_3_0_param,
myreceiver_3_0O_sender_queue) ;

// GENERATE myreceiver_3_0 TIMERS
// END GENERATE myreceiver_3_0
expl := Expl();

startUp := StartUp();

remPid := RemPid();

// SYSTEM
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system mysender_1_PSI, mysender_1_0, mysender_1_0_queue, mysender_1_0_t1,
x_2_PSI, myreceiver_3_PSI, x_2_0, x_2_0_queue, myreceiver_3_0,
myreceiver_3_0_queue, mysender_1_PS0, x_2_PSO, myreceiver_3_PS0, expl,
startUp, remPid;
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