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Abstract. This chapter presents principles and techniques for model-based black-
box conformance testing of real-time systems using the UPPAAL model-checking
tool-suite. The basis for testing is given as a network of concurrent timed au-
tomata specified by the test engineer. Relativized input/output conformance serves
as the notion of implementation correctness, essentially timed trace inclusion
taking environment assumptions into account. Test cases can be generated of-
fline and later executed, or they can be generated and executed online. For both
approaches this chapter discusses how to specify test objectives, derive test se-
quences, apply these to the system under test, and assign a verdict.

1 Introduction

Many computer-based systems monitor and control a physical environment through
sensors and actuators. The physical laws governing the environment induce a set of
real-time constraints which the system must obey in order to achieve satisfactory or safe
operation. Thus the computer system must not only produce correct result or reaction,
but must do so at the correct time; neither too early nor too late. For a real-time system
the timely reaction is just as important as the kind of reaction.

Testing real-time systems is even more challenging than testing untimed reactive sys-
tems, because the tester must now consider when to stimulate system, when to expect
responses, and how to assign verdicts to the observed timed event sequence. Further, the
test cases must be executed in real-time, i.e., the test execution system itself becomes a
real-time system.

In this chapter we introduce a formal approach to model-based black-box conformance
testing of real-time systems. We aim both at introducing timed testing to readers that
are new in the area by giving many examples, and to more experienced readers by being
formally precise and by touching on more advanced topics.

1.1 Approach and Chapter Outline

Real-time influences all aspects of test generation: The specification language must
allow for the specification of real-time constraints. The conformance (implementation)



relation must define what real-time behavior should be considered correct. It should be
possible to specify what parts of the specified behavior should be tested. This can be
done through test purposes, coverage criteria, or random exploration. Finally, the test
generation algorithm must analyze the real-time specification, select and instantiate test
cases, and output these in a timed test notation language. This computation must be
done efficiently in order to handle large and complex specifications.

The timed automata formalism has become a popular and widespread formalism for
specifying real-time systems. We adopt the particular UPPAAL style of timed automata.
UPPAAL style timed automata have proven very expressive and convenient, but can still
be analyzed efficiently. Section 2 introduces timed automata, their formal semantics in
terms of timed labeled transition systems, and how to use timed automata to model and
specify the behavior of real-time systems.

In the timed testing research community there is still no consensus on the exact con-
formance relation to use to evaluate the correctness of an implementation compared
to its specification. Timed trace inclusion captures many of our intuitive expectations
as well as having desired formal properties and is consistent with the widely accepted
untimed input/output conformance-relation of Tretmans. We propose relativized timed
input/output conformance relation between model and implementation under test (IUT)
which coincides with timed trace inclusion taking assumptions about the environment
behavior explicitly into account. In addition to allowing explicit and independent mod-
elling of the environment, it also has some nice theoretical properties that allow testing
effort to be reused when the environment or system requirements change. Relativized
real-time input-output conformance is presented in Section 3.

Common approaches to test selection include test purposes or coverage criteria. When
a model-checker is to be used to generate test sequences, the model is typically ex-
plicitly annotated with auxillary variables or automata that allow the test purpose or
coverage criterion to be formulated as a reachability property that can be issued to the
model-checker. In this chapter we present a more elegant approach where test purposes
and coverage criteria can be formulated as observer automata that can be automatically
superimposed on the model. This avoids explicit changes to the model, and allows the
user to specify his own coverage criteria with relative ease. Observers and test genera-
tion using model-checking are presented in Section 4.

Given the model and observer automata, the problem becomes how to implement a test
generator that efficiently can generate the required test suite. In Section 4.4 we propose
an efficient algorithm that extends the basic reachability algorithm in UPPAAL with a
compact bit-vector encoding of the specified coverage criteria.

The chapter illustrates two different approaches to timed testing which can be viewed
as two extremes in a spectrum of possible approaches, offline and online testing, as de-
picted in Figure 1. In between these extremes are approaches that precompute a strategy
or reduced specification (with particular test purpose in mind) later to be executed on-
line. Offline and online testing are compared below and discussed in detail in Sections
4 and 5.
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Fig. 1. Online vs. Offline Test Generation

1.2 Offline Test Generation

In offline test generation the test suite is pre-computed completely from the specification
before it is executed on the implementation under test. Offline test generation inherits a
general advantage of automated model-based testing such that when the requirements
or model change, test cases can be automatically re-generated to reflect the change,
rather than manually updating every test case and test script.

The advantages of offline test generation are that test cases are easier, cheaper, and
faster to execute because all time constraints in the specification have been resolved
at test generation time, and in addition, that the test suite can be generated with some
a-priori guarantees, e.g., that the specification is structurally covered, or that a given set
of test-objectives are met as fast or with as few resources as possible.

There are two main disadvantages of offline test generation. One is that the specification
must be analyzed in its entirety, which often results in a state-explosion which limits
the size of the specification that can be handled. Another problem is non-deterministic
implementations and specifications. In this case, the output (and output timing) cannot
be predicted, and the test case must be adaptive. Typically, the test case takes the form
of a test-tree that branches for all possible outcomes. This may lead to very large test
cases. In particular for real-time systems the test case may need to branch for all time
instances where an output could arrive.

Offline test generators therefore often limit the expressiveness and amount of non-
determinism of the specification language. This has been a particular problem for of-
fline test generation from timed automata specifications, because the technique of de-
terminizing the specification cannot be directly applied.

Given a restricted class of deterministic and output urgent timed automata we show in
Section 4 how it is possible to use the unmodified UPPAAL model-checker to synthesize
test cases that are guaranteed to take the least possible time to execute. We also define
a language for defining test purposes and coverage criteria, and present an efficient test
generation algorithm.



1.3 Online Testing

Another testing approach is online (on-the-fly) testing that combines test generation and
execution. Here the test generator interactively interprets the model, and stimulates and
observes the IUT. Only a single test input is generated from the model at a time which
is then immediately executed on the IUT. Then the produced output (if any) by the IUT
as well as its time of occurrence are checked against the specification, a new input is
produced and so forth until it is decided to end the test, or an error is detected. Typically,
the inputs and delays are chosen randomly. An observed test run is a trace consisting of
an alternating sequence of (input or output) actions and time delays.

There are several advantages of online testing. Testing may potentially continue for
a long time (hours or even days), and therefore long, intricate test cases that stress
the IUT may be executed. The state-space-explosion problem experienced by many
offline test generation tools is reduced because only a limited part of the state-space
needs to be stored at any point in time. Further, online test generators often allow more
expressive specification languages, especially wrt. allowed non-determinism in real-
time models: Since they are generated event-by-event they are automatically adaptive to
the non-determinism of the specification and implementation. Online testing has proven
an effective error detection technique [TB99,VTB+00,BFV+99].

A disadvantage is that the specification must be analyzed online and in real-time which
require very efficient test generation algorithms to keep up with the implementation and
specified real-time requirements. Also the test runs are typically long, and consequently
the cause of a test failure may be difficult to diagnose. Although some guidance is pos-
sible, test generation is typically randomized which means that satisfaction of coverage
criteria cannot be a priory guaranteed, but must instead be evaluated post mortem.

In Section 5 we present a sound and complete algorithm for online testing of real-
time systems from timed automata specifications allowing full non-determinism. We
describe an extension of UPPAAL, named TRON, that implements this algorithm, and
give an application example. We furthermore show how testing can be viewed as the
two sub-problems of environment emulation and system monitoring, and we show how
TRON can be configured to perform both combined or independently.

2 Specification of Real-Time Systems

This section formally presents our semantic framework, and introduces timed input/output
transition systems (TIOTS), timed automata (TA), and our relativized timed input/output
conformance relation.

2.1 Environment and System Modelling

An embedded system interacts closely with its environment which typically consists
of the controlled physical equipment (the plant) accessible via sensors and actuators,



other computer based systems or digital devices accessible via communication networks
using dedicated protocols, and human users. A major development task is to ensure
that an embedded system works correctly in its real operating environment. Due to
lack of resources it is not feasible to validate the system for all possible (imaginary)
environments. Also it is not necessary if the environments are known to a large extent.
However, the requirements and the assumptions of the environment should be clear and
explicit.

We denote the system being developed IUT, and its real operating environmentRealENV.
These communicate by exchanging input and output signals (seen from the perspective
of IUT). Using a model-based development approach, the environment assumptions and
system requirements are captured through abstract behavioral models denoted E and S
respectively, communicating on abstract signals i ∈ A in and o ∈ Aout corresponding
(via a suitable abstraction) to the real input and output , see Figure 2.
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Fig. 2. Abstraction of a system.

Modeling the environment explicitly and separately and taking this into account dur-
ing test generation has several advantages: 1) the test generation tool can synthesize
only relevant and realistic scenarios for the given type of environment, which in turn
reduces the number of required tests and improves the quality of the test suite; 2) the
engineer can guide the test generator to specific situations of interest; 3) a separate en-
vironment model avoids explicit changes to the system model if testing must be done
under different assumptions or use patterns.

2.2 Timed I/O Transition Systems

To define our testing framework formally we need to introduce a semantic foundation
for real-time systems. We use it to model systems and to define the formal semantics of
timed automata. A timed input/output transition system (TIOTS) is a labelled transition
system where actions have been classified as inputs or outputs, and where dedicated
delay labels model the progress of time. In our case we use the set of positive real-
numbers to model time. Below we also extend commonly used notation for labeled
transition systems to TIOTS.



Formal Definition of TIOTS. We assume a given set of actions A partitioned into two
disjoint sets of output actions Aout and input actions Ain . In addition we assume that
there is a distinguished unobservable action τ �∈ A. We denote by A τ the set A ∪ {τ}.

A timed I/O transition system (TIOTS) S is a tuple (S, so, Ain , Aout ,−→), where

– S is a set of states, s0 ∈ S,
– and−→⊆ S×(Aτ ∪R≥0)×S is a transition relation satisfying the usual constraints

of time determinism (if s
d−→ s′ and s

d−→ s′′ then s′ = s′′), time additivity (if

s
d1−→ s′ and s′ d2−→ s′′ then s

d1+d2−−−−→ s′′), and zero-delay (for all states s
0−→ s).

d, d1, d2 ∈ R≥0, and R≥0 denotes non-negative real numbers.

Notation for TIOTS. Let a, a1...n ∈ A, α ∈ Aτ ∪R≥0, and d, d1...n ∈ R≥0. We write
s

α−→ iff s
α−→ s′ for some s′. We use ⇒ to denote the τ -abstracted transition relation

such that s
a⇒ s′ iff s

τ−→∗ a−→ τ−→∗
s′, and s

d⇒ s′ iff s
τ−→∗ d1−→ τ−→∗ d2−→ τ−→∗ · · · τ−→∗ dn−→ τ−→∗

s′ where d = d1 + d2 + · · · dn. We extend ⇒ to sequences in the usual manner.

S is strongly input enabled iff s
i−→ for all states s and for all input actions i. It is

weakly input enabled iff s
i⇒ for all states s and for all input actions i. We assume that

input actions (seen from the system point of view) are controlled by the environment
and outputs are controlled by the system. An input enabled system cannot refuse input
actions. However it may decide to ignore the input by executing a transition that results
in the same state.

S is non-blocking iff for any state s and any t ∈ R≥0 there is a timed output trace
σ = d1o1 . . . ondn+1, oi ∈ Aout , such that s

σ⇒ and
∑

i di ≥ t. Thus S will not
block time in any input enabled environment. This property ensures that a system will
not force or rush its environment to deliver an input, and vice versa, the environment
will never force outputs from the system. Time is common for both the system and its
environment, and neither controls it.

To model potential implementations it is useful to define the properties of isolated out-
puts and determinism. S is deterministic if for all delays or actions α ∈ Aτ ∪ R≥0, and
all states s, whenever s

α−→ s′ and s
α−→ s′′ then s′ = s′′. That is, the successor state of

an action is always uniquely known.

We say that S has isolated outputs if whenever s
o−→ for some output action o, then

s � τ−→ and s � d−→ for all d > 0 and whenever s
o′−→ then o′ = o. A system with isolated

outputs will only offer one output at a time, and will never retract an offered output by
performing internal actions or delays.

Finally, a TIOTS exhibits output urgency iff whenever an output (or τ ) is enabled, it

will occur immediately, i.e., whenever s
α−→, α ∈ Aout ∪ {τ} then s � d−→, d ∈ R≥0. An

output urgent system will deliver the output immediately when ready.

An observable timed trace σ ∈ (A ∪ R≥0)∗ is of the form σ = d1a1d2 . . . akdk+1. We
define the observable timed traces TTr(s) of a state s as:

TTr(s) = {σ ∈ (A ∪ R≥0)∗ | s σ⇒} (1)



For a state s (and subset S ′ ⊆ S) and a timed trace σ, s After σ is the set of states that
can be reached after σ:

s After σ = { s′ | s
σ⇒ s′ }, S′ After σ =

⋃
s∈S′

s After σ (2)

The set Out
(
s
)

of observable outputs or delays from states s ∈ S ′ ⊆ S is defined as:

Out
(
s
)

= { a ∈ Aout ∪ R≥0 | s
a⇒}, Out

(
S′) =

⋃
s∈S′

Out
(
s
)

(3)

TIOTS Composition. Let S = (S, s0, Ain , Aout ,−→) and E = (E, eo, Aout , Ain ,−→)
be TIOTSs. Here E is the set of environment states and the set of input (output) actions
of E is identical to the output (input) actions of S. The parallel composition of S and
E forms a closed system S ‖ E whose observable behavior is defined by the TIOTS
(S × E, (s0, e0), Ain , Aout ,−→ ) where −→ is defined as

s
a−→ s′ e

a−→ e′

(s, e) a−→ (s′, e′)

s
τ−→ s′

(s, e) τ−→ (s′, e)

e
τ−→ e′

(s, e) τ−→ (s, e′)

s
d−→ s′ e

d−→ e′

(s, e) d−→ (s′, e′)
(4)

2.3 Timed Automata

Timed automata [AD94] is an expressive and popular formalism for modelling real-time
systems. Essentially a timed automaton is an extended finite state machine equipped
with a set of real-valued clock-variables that track the progress of time and that can
guard when transitions are allowed.

Formal Definition of Timed Automata. Let X be a set of R≥0-valued variables called
clocks. Let G(X) denote the set of guards on clocks being conjunctions of constraints
of the form x �� c, and let U(X) denote the set of updates of clocks corresponding to
sequences of statements of the form x := c, where x ∈ X , c ∈ N, and �� ∈ {≤, <, =
, >,≥}. A timed automaton over (A, X) is a tuple (L, �0, I, E), where

– L is a set of locations, �0 ∈ L is an initial location,
– I : L → G(X) assigns invariants to locations, and
– E is a set of edges such that E ⊆ L × G(X) × Aτ × U(X) × L.

We write �
g,α,u−−−−→ �′ iff (�, g, α, u, �′) ∈ E.

The semantics of a TA is defined in terms of a TIOTS over states of the form s = (�, v̄),
where � is a location and v̄ ∈ R

X
≥0 is a clock valuation satisfying the invariant of �.



Intuitively, a timed automaton can either progress by executing an edge or by remaining
in a location and letting time pass:

∀d′ ≤ d. I�(d′)

(�, v̄) d−→ (�, v̄ + d)

�
g,α,u−−−−→ �′ ∧ g(v̄) ∧ I�′(v̄′), v̄′ = u(v̄)

(�, v̄) α−→ (�′, v̄′)
(5)

In delaying transitions, (�, v̄) d−→ (�, v̄+d), the values of all clocks of the automaton are
incremented by the amount of the delay d, denoted v̄ + d. The automaton may delay in
a location � as long as the invariant I� for that location remains true. Discrete transitions
(�, v̄) α−→ (�′, v̄′) correspond to execution of edges (�, g, α, u, � ′) for which the guard g
is satisfied by v̄, and for which the invariant of the target location I �′ is satisfied by the
updated clock valuation v̄ ′. The target state’s clock valuation v̄ ′ is obtained by applying
clock updates u on v̄.

UPPAAL Timed Automata. Throughout this chapter we use UPPAAL syntax to illus-
trate TA, and the figures are direct exports from UPPAAL. UPPAAL allows construction
of large models by composing timed automata in parallel and lets these communicate
using shared discrete and clock variables and synchronize (rendezvous-style) on com-
plementary input and output actions, as well as broadcast actions.

Initial locations are marked using a double circle. Edges are by convention labeled by
the triple: guard, action, and assignment in that order. The internal τ -action is indicated
by an absent action-label. Committed locations are indicated by a location with an en-
circled “C”. A committed location must be left immediately by the next transition taken
in the system. An urgent location (encircled “U”) must be left without letting time pass,
but allows interleaving by other automata. Finally, bold-faced clock conditions placed
under locations are location invariants. In addition to clocks, UPPAAL also allows inte-
ger variables to be used in guards and assignments.

The latest version further supports a safe subset of C-code in assignments and guards,
and C-data-structures.

Example 1. Fig. 3 shows a TA modeling the behavior of a simple light-controller. The
user interacts with the controller by touching a touch sensitive pad. The light has three
intensity levels: OFF, DIMMED, and BRIGHT. Depending on the timing between suc-
cessive touches (recorded by the clock x), the controller toggles the light levels. For
example, in dimmed state, if a second touch is made quickly (before the switching time
Tsw = 4 time units) after the touch that caused the controller to enter dimmed state
(from either off or bright state), the controller increases the level to bright. Conversely,
if the second touch happens after the switching time, the controller switches the light
off. If the light controller has been in off state for a long time (longer than or equal to
Tidle = 20), it should reactivate upon a touch by going directly to bright level.

The simple light controller can perform the execution sequence (OFF, x = 0) 5−→
(OFF, x = 5) touch?−−−−→ (dim1, x = 0) dim!−−−→ (DIM, x = 0) 3.14−−→ (DIM, x = 3.14) touch?−−−−→
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Fig. 3. Light Controller.

(bright2, x = 0)
bright!−−−−→ (BRIGHT, x = 0) resulting in the observable trace σ =

5 · touch? · dim! · 3.14 · touch! · bright !. Note that {(OFF, x = 0)} After σ =
{(BRIGHT, x = 0)}, Out

({(OFF, x = 0)} After σ
)

= R≥0, but Out
(
(bright2, x =

0)
)

= {bright !} ∪ {0}.
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Fig. 4. Two possible environment models for the simple light switch

Figure 4 shows two possible environment models for the simple light controller. Fig-
ure 4(a) models a user capable of performing any sequence of touch actions. When the
constant Treact is set to zero he is arbitrarily fast. A more realistic user is only capable of
producing touches with a limited rate; this can be modeled setting T react to a non-zero
value. Figure 4(b) models a different user able to make two quick successive touches
(counted by integer variable t), but which then is required to pause for some time (to
avoid cramp), e.g., Tpause = 5.



The TA shown in Figure 3 and Figure 4 respectively can be composed in parallel on ac-
tions Ain = {touch} and Aout = {off, dim, bright} forming a closed network (to avoid
cluttering the figures we may sometimes omit making them explicitly input enabled; for
the unspecified inputs there is a non-drawn self looping edge that merely consumes the
input without changing the location).

Example 2. Figure 5(a) shows a timed automaton specification C r for a controller whose
goal is to control and keep the room temperature in Med range by turning On and Off
the room cooling device. The controller is required: 1) to turn On the cooling device
within an allowed reaction time r when the room temperature reaches High range, and
2) to turn it Off within r when the temperature drops to Low range. Observe how loca-
tion invariants are used to force the automaton to leave the dn and up locations before
the reaction time has elapsed, in consequence producing the output at some time be-
fore the required reaction time. When the room temperature is medium the cooling is
allowed to be either on or off.

This specification is non-deterministic in two ways. First, there are several next states
to a Med temperature, e.g.,

{(off, x = 0)} After 5 · Med? = {(off, x = 5), (up, x = 0)}. (6)

Second, the controller switches state within the reaction time r, but it is unknown when.
Thus from e.g., state (up, x = 0) the controller may execute any of the observable
traces, d · On!, 0 ≤ d ≤ r. Note that

Out
(
(up, x = 0)

)
= {On!} ∪ {d | 0 ≤ d ≤ r}. (7)

The intention of this specification (given our conformance relation) is to allow imple-
mentation freedom to the manufacturer wrt. exact functionality, speed, timing toler-
ances, etc..

The UPPAAL Tool. In the UPPAAL tool it is possible to edit, simulate and check proper-
ties of UPPAAL timed automata in a graphical environment. The property specification
language supports safety, liveness, deadlock, and response properties.

In this chapter we use the UPPAAL tool for offline test generation by expressing the
test case generation problem as a safety property that can be solved by reachability
analysis. Safety properties are used to expresses requirements of the form “the model
can never reach an undesired state”. The dual properties like “the system can reach a
desired state”, are usually referred to as reachability properties.

When checking a safety property, the UPPAAL tool performs symbolic reachability
analysis of the network of timed automata to search for reachable states where the
property is satisfied (or not satisfied). If a state that satisfies the property is found, UP-
PAAL generate a diagnostic traces witnessing a submitted safety property. Currently
UPPAAL supports three options for diagnostic trace generation: some trace leading to
the goal state, the shortest trace with the minimum number of transitions, and fastest
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Fig. 5. Timed automata of simple controller and various environments.

trace with the shortest accumulated time delay. The underlying algorithm used for find-
ing time-optimal traces is a variation of the A∗-algorithm [BFH+01,LBB+01]. Hence,
to improve performance it is possible to supply a heuristic function estimating the re-
maining cost from any state to the goal state.

To perform reachability analysis of (densely) timed automata UPPAAL uses a (finite)
symbolic representation of the state space and symbolic computation steps.

A symbolic state is of the form (�, D), where � is a control location of a timed automa-
ton and D is a convex subset of R

|X|
≥0 , i.e. it represents the (potentially infinite) set of

concrete states {(�′, v̄) | �′ = � ∧ v̄ ∈ D}. The initial symbolic state is (�0, D0), where

D0 = { v̄ | (�0, v̄0)
d−→ (�0, v̄) } and v̄0 is the clock valuation assigning all clocks to

zero.



A symbolic computation step (�, D) α−→ (�′, D′) consists of performing an action fol-
lowed by some delay, and can be performed iff (�, v̄) α−→ (�′, v̄′), and

D′ =
{

v̄′′ | (�, v̄) α−→ (�′, v̄′) ∧ (�′, v̄′) d−→ (�′, v̄′′) ∧ v̄ ∈ D
}

.

It is possible to represent a convex subset D as a so-called difference bounded matrix
[Dil89] that can be efficiently manipulated by constraint-solving techniques [ RM94],
implemented as model-checking tools such as UPPAAL and Kronos [DOY94].

3 Relativized Timed Conformance

In this section we define our notion of conformance between TIOTSs. Our notion
derives from the input/output conformance relation (ioco) of Tretmans and de Vries
[Tre99,VT00] by taking time and environment constraints into account. Under assump-
tions of weak input enabledness our relativized timed conformance relation (denoted
rtiocoe) coincides with relativized timed trace inclusion. Like ioco, this relation ensures
that the implementation has only the behavior allowed by the specification. In particu-
lar, 1) it is not allowed to produce an output at a time when one is not allowed by the
specification, 2) it is not allowed to omit producing an output when one is required by
the specification.

The ioco relation operates with the concept of quiescence allowing (eternal) absence of
outputs to be observed by means of a finite time out, and be equalized with a special
observable action, resulting in a more discriminating relation. It is debatable whether
the same abstraction is reasonable in real-time systems. Briones et al. have proposed
relations that allows this [BB04], see also the discussion in Section 6.1. Our relation
takes the view that only finite progress of time can be observed in a real-time system.
Thus, rtiocoe offers the notion of time-bounded (finite) quiescence, that—in contrast to
ioco’s conceptual eternal quiescence—can be observed in a real-time system.

Formal Definition of rtiocoe. Let S = (S, s0, Ain , Aout ,−→) be an weak-input enabled
and non-blocking TIOTS. An environment for S is itself a weak-input enabled and non-
blocking TIOTS E = (E, eo, Aout , Ain ,−→) with reversed inputs and outputs.
Given an environment e ∈ E the e-relativized timed input/output conformance relation
rtiocoe between system states s, t ∈ S is defined as:

s rtiocoe t iff ∀σ ∈ TTr(e). Out
(
(s, e) After σ

) ⊆ Out
(
(t, e) After σ

)

Whenever s rtiocoe t we will say that s is a correct implementation (or refinement)
of the specification t under the environmental constraints expressed by e. Under the
assumption of weak input-enabledness of both S and E we may characterize relativized
conformance in terms of trace-inclusion as follows:

Lemma 1. Let S and E be input-enabled with states s, t ∈ S and e ∈ E resp., then

s rtiocoe t iff TTr(s) ∩ TTr(e) ⊆ TTr(t) ∩ TTr(e)



Thus if s rtiocoe t does not hold then there exists a trace σ of e such that s
σ⇒ but t � σ⇒.

Given the notion of relativized conformance it is natural to consider the preorder on
environments based on their discriminating power, i.e. for environments e and f :

e � f iff rtiocof ⊆ rtiocoe (8)

(to be read f is more discriminating than e). It follows from the definition of rtioco that
e � f iff TTr(e) ⊆ TTr(f). In particular there is a most (least) discriminating (weakly)
input enabled and non-blocking environment U (O) given by TTr(U) = (A ∪ R ≥0)∗(
TTr(O) = (Aout∪R≥0)∗

)
. The corresponding conformance relation rtiocoU (rtiocoO)

specializes to simple timed trace inclusion (timed output trace inclusion) between sys-
tem states.

Moreover, because we treat environment constraints explicitly and separately, rtioco e

has some nice theoretical and practical attractive properties that allows the tester to re-
use testing effort if either the environment assumption is strengthened, or if the system
specification is weakened. Assume that i rtiocoe s, then without re-testing

if s � s′ then i rtiocoe s′ (9)

if e′ � e then i rtiocoe′ s (10)

In the following we exemplify how our conformance relation discriminates systems,
and illustrate the potential power of environment assumptions and how this can help to
increase the relevance of the generated tests for a given environment.

Example 3. Consider the simple cooling controller C r of Figure 5(a), where r is a pa-
rameter r with its reaction time, and the environment in Figure 5(c).

Take C10 to be the specification and assume that the implementation behaves like C 12.
Clearly, C8 rtiocoEM C6 because σ = 0 ·Med ! ·7 ·On! ∈ TTr(C8), but σ �∈ TTr(C6), or
alternatively, Out

(C8 After 0·Med ! ·7)
= {On!}∪R≥0 �⊆ Out

(C6 After 0·Med !·7)
=

R≥0 (recall that Cr may remain in location off on input Med and not produce any
output). The implementation can thus perform an output at a time not allowed by the
specification.

Next, suppose Cr is implemented by a timed automaton C ′r equal to Cr, except the

transition up Low−−−→ dn is missing, and replaced by a self loop up Low−−−→ up.

They are distinguishable by the timed trace 0·Med?·0·High?·0· Low?·0· On! in the im-
plementation that is not in the specification (switches the compressor Off instead).

Example 4. Figure 5(c) shows the universal (most general) and completely uncon-
strained environment EM where room temperature may change unconstrained and may
change (discretely) with any rate. This may not be realistic in the given physical envi-
ronment, and there may be less need to test the controller in such an environment, as
temperature normally evolves slowly and continuously, e.g., it cannot change drastically



from Low to High and back unless through Med. Similarly, most embedded and real-
time systems also interact with physical environments and other digital systems that—
depending on circumstances—can be assumed to be correct and correctly communicate
using well defined interfaces and protocols.

Figures 5(b) to 5(e) show four possible environment assumptions for C r. Figure 5(c) and
Figure 5(b) shows respectively the most discriminating and least discriminating envi-
ronments. Figure 5(d) shows the environment model E d

1 where the temperature changes
through Med range and with a speed bounded by d. Figure 5(e) shows an even more
constrained environment E d,s

2 that assumes that the cooling device works, e.g., temper-
ature changes with an upper and lower speed bounded by d and s.

Notice that E2 and E1 have less discriminating power and thus may not reveal faults
found under more discriminating environments. However, if the erroneous behavior is
impossible in the actual operating environment the error may be irrelevant. Consider
again the implementation C ′r from above. This error can be detected under E 0 and Ek

1 if
k = 3d and r > k, via the timed trace that respects d·Med?·d·High?·d·Med?·d·Low?·ε·
On!, ε ≤ r. The specification would produce Off. The error cannot be detected under
E1 if it is too slow 3d > r, and never under E2 for no value of d.

In the extreme the environment behavior can be so restricted that it only reflects a single
test scenario that should be tested. In our view, the environment assumptions should be
specified explicitly and separately.

4 Offline Test Generation

In this section, we describe an offline test generation approach for real-time systems
specified as timed automata. In order to specify that a certain level of thoroughness is
achieved in the testing we shall require that a generated test suite satisfies a given cov-
erage criterion. For untimed systems coverage criteria have been studied by researchers
for many years, and a number specific coverage criteria have been proposed in the liter-
ature, including [Mye79, RCT92, CM94, Cho78, CPRZ89, Her76, LK83, RW85, Nta88,
FJJV97, RdBJ00]. In comparison, research in real-time coverage criteria is still a more
immature area where not many general results are available. Therefore, most of the
coverage criteria and test generation techniques described in this section were origi-
nally proposed for testing of untimed systems. However, they can often be adopted for
the domain of real-time system. For example, the well-known all-definitions use-pair
coverage criterion [Her76,LK83] (described in Sections 4.2 and 4.3), can be applied to
definitions and uses of timers, as well as data variables.

We will see in Section 4.2 how test case generation can be performed by reformulating
the problem as a model-checking problem that can be solved by a model-checking tool
like UPPAAL. This will require that the original system is annotated with variables that
are needed to formulate the test case generation problem as a model-checking problem.
For intricate coverage criteria, it can be cumbersome to find and manually do the right
model annotations. The auxiliary variables also add extra complexity to the timed au-
tomata model. In Section 4.3 we present a formal language to specify coverage criteria



and we review an algorithm which handles the extra information directly in the algo-
rithm. In this way the process becomes more user friendly, and the coverage information
can be dealt with more efficiently using a bit-vector representation.

In order to make offline test case generation applicable to timed automata specifications,
we shall assume that the underlying TIOTS is deterministic, weakly input enabled, out-
put urgent, with isolated outputs as defined in Section 2.2. This means that the S is
assumed to react deterministically to any input provided, and will always be able to
accept input from the test case. At any state, the S is also assumed to always have at
most one output action that will occur immediately.

Further, as discussed in Section 2, we shall assume that the test specification is given
as a closed network of TA that can be partitioned into one subnetwork S specifying
the required behavior of the IUT, and one subnetwork E modeling the behavior of its
intended environment RealENV, as depicted in Fig. 2.

4.1 Test-Case Generation by Model-Checking

When generating test cases by model-checking, the idea is to formulate the problem
as a reachability problem that can be solved with an existing model-checking tool. As
mentioned, we will use the UPPAAL tool introduced in Section 2.3 to perform reacha-
bility analysis of timed automata. More precisely, we shall use a boolean combination
of comparisons between integer constants and variables in the model to characterise a
desired state to be reached.

In Section 4.2, we will describe in more details how UPPAAL’s ability to produce traces
witnessing a posed reachability property can be used to produce test cases for a given
test purpose or coverage criteria. First, we describe how diagnostic traces can be inter-
preted as test cases.

From Diagnostic Traces to Test Cases. Let A be a TA composition of an IUT model
S and a model E of its intended environment RealENV. A diagnostic trace produced
by UPPAAL for a given reachability question on A demonstrates the sequence of moves
to be made by each of the system components and the required clock constraints needed
to reach the target location. A (concrete) diagnostic trace will have the form:

(s0, e0)
γ0−→ (s1, e1)

γ1−→ (s2, e2)
γ2−→ · · · (sn, en)

where si, ei are states of the S and E , respectively, and γi are either time-delays or
synchronization (or internal) actions. The latter may be further partitioned into purelyS
or E transitions (hence invisible for the other part) or synchronizing transitions between
the IUT and the RealENV (hence observable for both parties).

A test sequence is an alternating sequence of concrete delay actions and observable
actions. From the diagnostic trace above a test sequence, λ ∈ A in ∪ Aout ∪ R≥0, may
be obtained simply by projecting the trace to the E-component, while removing invisible



transitions, and summing adjacent delay actions. Finally, a test case to be executed on
the real IUT implementation may be obtained from λ by the addition of verdicts.

First note that with the assumptions made on the underlying TIOTS made above, the
conformance relation specializes to timed trace inclusion, as discussed in Section 3.
Thus, after any input sequence, the implementation is allowed to produce an output only
if the specification is also able to produce that output. Similarly, the implementation
may delay (thereby staying silent) only if the specification also may delay. The test
sequences produced by our techniques are derived from diagnostic traces, and are thus
guaranteed to be included in the specification.

To clarify the construction we may model the test case itself as a TA Aλ for the test
sequence λ. Locations in Aλ are labelled using two distinguished labels, PASS and
FAIL. The execution of a test case is now formalized as the composition of the test case
automaton Aλ and IUT AI .

IUT passes λ iff Aλ ‖ AI �−→∗ FAIL

Aλ is constructed such that a complete execution terminates in a FAIL state if the IUT
cannot perform λ and such that it terminates in a PASS state if the IUT can execute all
actions of λ. The construction is illustrated in Figure 6.

o_1?

o_n?

o_0?

i_0!

z=0

o_0?

PASS
FAIL

FAIL

FAIL

z=0

z==delay

z<=delayz<delay

z<=0

Fig. 6. Test case automaton for the sequence i0! · delay · o0?.

4.2 Coverage-Based Test Case Generation

We shall see how test cases satisfying a given coverage criterion can be generated by
model-checking. A common approach to the generation of test cases is to first manually
formulate a set of informal test purposes and then to formalize these such that the model
can be used to generate one or more test cases for each test purpose.



Test Purposes. A test purpose is a specific test objective (or property) that the tester
would like to observe on the IUT. We will formulate the test purpose as a property
that can be checked by reachability analysis of the combined E and S model. Different
techniques can be used for this purpose. Sometimes the test purpose can be directly
transformed into a simple model-checking property expressed as a boolean combina-
tion of automata locations. In other cases it may require decoration of the model with
auxiliary flag variables. Another technique is to replace the environment model with a
more restricted one that matches the behavior of the test purpose only.

off? dim? bright?bright?off? dim? dim?

z>=Treact and z<Tsw z>=Treact and z<Tsw

z=0

z<Tsw

goal

bright?

touch!touch! touch! off?
z=0 z=0

Fig. 7. Test Environment for TP2.

Example 5. We exemplify these two approaches using the following two test purposes
expressing test objectives of the simple light controller in Example 1.

TP1: Check that the light can become bright.
TP2: Check that the light switches off after three successive touches.

The test purpose TP1 can be formulated as a simple reachability property requiring that
eventually the lightContoller can enter location BRIGHT. Generating the shortest
diagnostic trace results in the test sequence:

20 · touch! · 0 · bright?
However, the fastest sequence satisfying the test purpose is

0 · touch! · 0 · dim? · 0 · touch! · 0 · bright?

The test purpose TP2 can be formulated by a reachability property requiring that a lo-
cation in a specific environment automaton can be reached. In Figure 7 an environment
automaton tpEnv for TP2 is shown. The automaton restricts the possible user input
so that there is at least Treact time units in between two consecutive touches. The
fastest test sequence satisfying the test purpose is:

0 · touch! · 0 · dim? · Treact · touch! · 0 · bright? · Treact · touch! · 0 · off ?



Coverage Criteria. Often the tester is interested in creating a test suite that ensures
that the specification or implementation is covered in a certain way. This ensures that a
certain level of thoroughness has been achieved in the test generation process. Here
we explain how test sequences with guaranteed coverage of the IUT model can be
computed by model-checking, effectively giving automated tool support.

A large suite of coverage criteria have been proposed in the literature, such as state-
ment, transition, and definition-use coverage, each with its own merits and application
domain. We explain how to apply some of these to TA models (more coverage criteria
will be introduced in Section 4.3).

Edge Coverage: A test sequence satisfies the edge-coverage criterion [Mye79] if,
when executed on the model, it traverses every edge of the selected TA-components.
Edge coverage can be formulated as a reachability property in the following way:
add an auxiliary variable ei of type boolean (initially false) for each edge to be cov-
ered (typically realized as a bit array in UPPAAL), and add to the assignments of
each edge i an assignment ei := true; a test suite can be generated by formulating
a property requiring that a state can be reached in which all e i variables are true,
i.e., (e0==true ∧ e1==true ∧ . . . ∧ en==true). The auxiliary variables are
needed to enable formulation of the coverage criterion as a reachability property
using the UPPAAL property specification language which is a restricted subset of
timed computation tree logic (TCTL) [ACD90].

Location Coverage: A test sequence satisfies the location-coverage criterion [Mye79]
if, when executed on the model, it visits every location of the selected TA-components.
To generate test sequences with location coverage, we introduce an auxiliary vari-
able bi of type boolean (initially false for all locations except the initial) for each
location �i to be covered. For every edge with destination � i: �′

g,a,u−−−−→ �i add to the
assignments u bi:=true; the reachability property will then require all b i variables
to be true.

Definition-Use Pair Coverage: The definition-use pair criterion [CPRZ89] is a data-
flow coverage technique where the idea is to cover paths in which a variable is
defined, i.e. appears in the left-hand side of an assignment, and later is used, i.e.
appears in a guard or the right-hand side of an assignment.
We use (v, ed, eu) to denote a definition-use pair (DU-pair) for variable v if e d is
an edge where v is defined and eu is an edge where v is used. A DU-pair (v, ed, eu)
is valid if eu is reachable from ed and v is not redefined in the path from ed to
eu. A test sequence covers (v, ed, eu) iff (at least) once in the sequence, there is a
valid DU-pair (v, ed, eu). A test sequence satisfies the (all-uses) DU-pair coverage
criterion of v if it covers all valid DU-pairs of v.
To generate test sequences with definition-use pair coverage, we assume that the
edges for a model are enumerated, so that e i is the number of edge i. We intro-
duce an auxiliary data-variable vd (initially false) with value domain {false} ∪
{1 . . . |E|} to keep track of the edge at which variable v was last defined, and
a two-dimensional boolean array du of size |E| × |E| (initially false) to store
the covered pairs. For each edge ei at which v is defined we add vd := ei, and
for each edge ej at which v is used we add the conditional assignment if (vd �=



false)then du[vd, ej] := true. Note that if v is both used and defined on the same
edge, the array assignment must be made before the assignment of v d.
The reachability property will then require all du[i, j] representing valid DU-pairs
to be true for the (all-uses) DU-pair criterion. Note that a test sequence satisfying
the DU-pair criterion for several variables can be generated using the same encod-
ing, but extended with one auxiliary variable and array for each covered variable.

Example 6. The light switch in Figure 3 requires a bit-array of 12 elements (one per
edge). When the environment can touch arbitrarily fast the generated fastest edge cov-
ering test sequence has the accumulated execution time 28. The solution (there might
be more traces with the same fastest execution time) generated by UPPAAL is:

0 · touch! · 0 · dim? · 0 · touch! · 0 · bright?·
0 · touch! · 0 · off ? · 20 · touch! · 0 · bright?·

4 · touch! · 0 · dim? · 4 · touch! · 0 · off ?

4.3 Test Case Generation using Observers

As described in the previous section, it is in principle possible to generate test cases by
annotating UPPAAL timed automata with auxiliary variables, and solve the problem by
reachability analysis. However, for more intricate coverage criteria it can be cumber-
some and very time-consuming to find the proper model annotations. Another problem
with using model-checking algorithms and tools to generate test cases is that they are
not really tailored for the problem, which may lead to problems with performance.

In this section, we shall present another approach to offline test case generation for
real-time systems modeled as timed automata. Instead of using model annotations and
reachability properties to specify coverage criteria, we shall present a language of ob-
servers as a generic and formal specification language for coverage criteria. We shall
further see how to adapt a model-checking algorithm to internally handle information
about coverage, so that test-case generation can be performed in a more efficient way.

The observers presented here are based on the notion of observers described by Blom
et.al., in [BHJP05]. In their setting, observers are used to express coverage criteria of
test cases generated from system specification described as extended finite state ma-
chines (EFSMs). In this section, we shall review their work and adapt the results to our
setting, i.e., for timed automata specifications of real-time systems. We first describe
how observers are used to specify coverage criteria.

The Observer Language. As we have seen, a coverage criterion typically consists of
a (rather large) set of items that should be “covered” or examined by the test suite. The
set of items to be covered is derived from a more general criterion, requiring that some
property ψ should be fulfilled, where ψ is a logical property characterizing the items to
be covered. For example, ψ could be satisfied for all locations or edges of a model, to
characterize the location of edge coverage criteria mentioned in the previous section. In



loc(up)

q0

target loc(up)

Fig. 8. An observer for location coverage of location up.

the following, we will use the term coverage item for an item satisfying ψ, and assume
that a coverage criterion is to cover as many coverage items ψ as possible of a model.

Using standard techniques from model-checking and run-time verification it is possible
to represent a coverage item by an observer that monitors how a timed automaton exe-
cutes. Whenever a coverage item characterized by the observer is fulfilled, the observer
will “accept” the trace. We shall assume that an observer can observe the actions in a
trace of an automaton, and also other details about the timed automata performing the
action, such as the source and target locations, and the values of its state variables. This
will make it possible to characterise a wide range of coverage criteria as observers.

Formally, an observer of a timed automaton S = (L, �0, I, E) is a tuple (Q, q0, Qf , B)
where

– Q is a finite set of observer locations
– q0 is the initial observer location.
– Qf ⊆ Q is a set of accepting observer locations.

– B is a set of edges, each of form q
b−→ q′ where q, q′ ∈ Q and b is a predicate

that depend on the S transition (�, v̄) α−→ (�′, v̄′). The evaluation of b can depend
on an input/output action α, and/or the syntactic edge �

g,α,u−−−−→ �′ the S transition
is derived from. 3

In many cases, the initial location q0 has an edge to itself with the predicate true. We
use the symbol • to represent q0 together with such a self-loop. Similarly, we assume
that each qf ∈ Qf has an edge to itself with the predicate true. We use the symbol
� to represent accepting locations. Intuitively, the loop in q 0 is often used to allow the
observer to “non-deterministically” start monitoring at any point in a timed trace. The
loop in each qf is used to allow an observer to stay in an accepting location.

Example 7. As a very simple example, consider the observer shown in Figure 8 charac-
terizing the coverage item “visit location up of the automaton”. It has an initial location
q0 and an accepting location loc(up). The predicate target loc(up) is satisfied when
location up is reached in the monitored timed automata. Hence, the observer could e.g.,
be used to express that location up should be covered in automaton C r of Figure 5.

3 For UPPAAL timed automata extended by variables, b can also depend on the variables.



Intuitively, observers have the following semantics: At any specific instant an observer
operates in one or serveral of its locations, say Qi ⊆ Q. At each transition, the observer
traverses all outgoing edges from each location q ∈ Q i, whose predicates are satisfied
(enabled) due to the monitored transition of S. Note that more than one (or none) of the
outgoing edges can be enabled. Thus the possible successors of a single location q can
be zero or more locations. This means that, if there is a path to an accepting location q f ,
that can be reached by choosing the “right” enabled edge after each transition of S, the
observer will find that path, like a non-deterministic automaton would do. In that sense,
an observer will monitor and find all possible coverage items. Later in this section, we
will define formally how observers monitor coverage criteria.

Since, a coverage criterion typically stipulates that a set of coverage items should be
covered, the notion of observers is extended with a parameterization mechanism so
that they can specify a set of coverage items. Parameterized observers are observers, in
which locations and edges may have parameters that range over given domains. Each
possible instantiation of a parameter gives a certain observer location or edge. For each
specified coverage item, the observer has an accepting (possibly parameterized) loca-
tion which (for convenience) is given the name of the corresponding coverage item.
When the accepting location is reached, the trace has covered the corresponding cover-
age item.

Example 8. The coverage criterion “visit all locations of C r” can be represented by a
parameterized observer with one initial state, and one parameterized accepting location,
named loc(L), where L is a parameter that ranges over locations in automaton C r. For
each value � of L, the location loc(�) is entered when the automaton enters location �.
A parameterized observer for location coverage is shown in Figure 9(a).

Without loss of generality we will, in the following description of observers, use a single
timed automaton corresponding to the TIOTS S in Section 2. Internal actions of the E
will not affect the observer and the extension to a network of timed automata is straight
forward.

How Observers Monitor Coverage Criteria. In test case generation an observer ob-
serves the transitions of the timed automaton monitored. Reached accepting locations
correspond to covered coverage items. We formally define the execution of an observer
in terms of a composition between a timed automaton and an observer, which has the
form of a superposition of the observer onto the timed automaton. Each state of this
superposition consists of a state of the timed automaton, together with a set of currently
occupied observer locations.

If a predicate b on an observer edge is satisfied by a timed automaton transition (�, v̄) α−→
(�′, v̄′) we write (�, v̄) α−→ (�′, v̄′) |= b. Formally, the superposition of an observer
(Q, q0, Qf , B) onto a timed automaton S is defined as follows:

– States are of the form 〈(�, v̄)|Q〉, where (�, v̄) is a state of the timed automaton, and
Q is a set of locations of the observer.



– The initial state is the tuple 〈(�0, v̄0)|{q0}〉, where (�0, v̄0) is the initial state of the
timed automaton, and q0 is the initial location of the observer.

– A computation step is defined by the following two rules
• 〈(�, v̄)|Q〉 α

� 〈(�′, v̄′)|Q′〉 if (�, v̄) α−→ (�′, v̄′) and

Q′ =
{

q′ | q b−→ q′ and q ∈ Q and (�, v̄) α−→ (�′, v̄′) |= b
}

• 〈(�, v̄)|Q〉 d
� 〈(�, v̄′)|Q〉 if (�, v̄) d−→ (�, v̄′)

– A state 〈(�, v̄)|Q〉 of the superposition covers the coverage item represented by the
location qf ∈ Qf if qf ∈ Q.

Note that the way the set Q is updated essentially results in an (on-the-fly) subset con-
struction of the parameterized observer. Initially, Q contains only the initial observer
location q0. In the subsequent computation steps, Q contains the set of all occupied
observer locations, representing already covered and partially covered coverage items.
In each discrete action step, the set of occupied observer locations Q ′ is obtained by
generating all possible successors to the locations in Q, i.e. all q ′ such that there exists

a q ∈ Q and an edge q
b−→ q′ ∈ B with b satisfied by the computation step of the timed

automaton. The observer set Q is not affected by delay transitions, indicating that the
the notion of observers presented in this chapter can not observe time delays.

Both the initial and all accepting observer locations (most commonly) have implicit
self-loops with predicate true. This means that in the superposition of the observer onto
a timed automaton, the initial observer location q0 is always occupied and all reached
accepting observer locations (representing covered coverage items) are guaranteed to
remain in Q. As mentioned before, The fact that q0 is always occupied can be intu-
itively understood as allowing for the observer to non-deterministically start monitoring
a timed automaton (or an IUT) at any computation step of a run (or at any point during
test execution).

Example 9. Figure 9 shows observers specifying a number of coverage criteria de-
scribed in the literature [CPRZ89].

The all-locations [Mye79] coverage criteria is specified by the observer shown in Fig-
ure 9(a), where the parameter L is any location in a timed automaton (if restricted to
one automaton). If the observer is superposed onto a TIOTS consisting of the timed
automaton Cr in Figure 5, we have that L = {on, dn, off , up} and the edge of the pa-
rameterized observer represents one edge for each location in the automaton C r i.e. an
edge guarded by target loc(on) with target location loc(on) etc. Here target loc(L)
is a predicate which evaluates to true if the observer monitors an edge of the timed
automaton Cr with the target location L. The set of possible coverage items is thus
{loc(on), loc(dn), loc(off ), loc(up)}.

The all-edges [Mye79] coverage observer in Figure 9(b) is similar to the all-location
coverage observer. Here edge(E) is a predicate which evaluates to true if the observer
monitors edge E of the timed automaton C r. The edges of the timed automaton C r in
Figure 5 are E={e0 , . . . , e15} 4, and thus the set of possible coverage items when the
observer is superposed onto the timed automaton is {edge cov (e i) | ei ∈ E }.

4 We assume that the edges can be referred to by indexes 0 to 15.
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Fig. 9. Five examples of coverage criteria expressed as observers.

The all-definition use-pairs (all-uses [CPRZ89], reach coverage [Her76, LK83]) cov-
erage observer is shown in Figure 9(c). It uses the two predicates def (X) and use(X)
that are true if X is defined and used on the monitored edge, respectively (as defined
in Section 4.2). The observer has an accepting location du(X, E, E ′), where X is a vari-
able name, E is an edge on which X is defined, and E ′ an edge on which X is used.
Variable X may not be redefined in the trace between E and E ′. If the observer mon-

itors the execution sequence (OFF, x = 0) 5−→ (OFF, x = 5) touch?−−−−→ (dim1, x =

0) dim!−−−→ (DIM, x = 0) 3.14−−→ (DIM, x = 3.14) touch?−−−−→ (bright2, x = 0)
bright!−−−−→

(BRIGHT, x = 0) of the timed automaton in Figure 3 the only covered coverage item is

du(x , OFF
touch?−−−−→ dim1, DIM

touch?−−−−→ bright2).

The all-definitions [RW85] coverage observer of Figure 9(d) is similar to the all-definition
use-pairs coverage except that only the defining edges are required to be covered. When
the observer is superposed with the timed automaton in Figure 3 the set of accept-

ing locations is { all def (OFF touch?−−−−→ bright1), all def (BRIGHT touch?−−−−→ dim2),
all def (DIM touch?−−−−→ bright2), all def (OFF touch?−−−−→ dim1), all def (DIM touch?−−−−→
off2), all def (BRIGHT touch?−−−−→ off1) }. The all affect-pairs (Ntafos’ required k-
Tuples [Nta88]) coverage observer is shown in Figure 9(e). It uses the predicate da(x, y)
that is true if the observer monitors a transition in which the value of variable x affects
the value of variable y. The observer accepts whenever a variable x affects a variable z



via another variable y . In this case we require that x directly affects y which, without
redefinition, directly affects z .

A Symbolic Semantics of Observers. The way observers monitor coverage criteria, as
defined above for timed automata, will result in an infinite state space due to the dense
representation of time. Therefore, before presenting the test case generation algorithm,
we shall introduce a finite-state symbolic semantics based on the symbolic semantics of
timed automata described in Section 2.3.

Formally, the symbolic semantics of observers superposed onto a timed automaton is
defined as follows:

– Symbolic states are of the form 〈(�, D)|Q〉, where (�, D) is a symbolic state of the
timed automaton, and Q is a set of observer locations.

– A initial symbolic state is a tuple 〈(�0, D0)|{q0}〉, where (�0, D0) is the initial
symbolic state of the timed automaton, and q0 is the initial observer location.

– A computation step is a triple 〈(�, D)|Q〉 α
� 〈(�′, D′)|Q′〉 for �′ and α such that

(�, v̄) α−→ (�′, v̄′),
D′ =

{
v̄′′ | (�, v̄) α−→ (�′, v̄′) ∧ (�′, v̄′) d−→ (�′, v̄′′) ∧ v̄ ∈ D

}
, and

Q′ =
{

q′ | q b−→ q′ ∧ q ∈ Q ∧ (�, v̄) α−→ (�′, v̄′) |= b
}

.

Note that the evaluation of b does not depend on the clock values of the observed timed
automata. Thus, if (�, v̄) α−→ (�′, v̄′) is a valid transition satisfying b, then any valid
transition (�, v̄′′) α−→ (�′, v̄′′′) in (l, D) α−→ (l′, D′) will also satisfy b.

4.4 Test Case Generation with Observers

In test case generation with observers, we use the superposition of an observer onto a
timed automaton, and view the test case generation problem as a state-space exploration
problem. To cover a single coverage item qf is the problem of finding a trace

tr = 〈(�0, v̄0)|{q0}〉 d
�

α
� . . .

d′
�

α′
�

d′′
� 〈(�, v̄)|Q〉 such that qf ∈ Q (11)

It can be shown, that the problem can also be stated based on the symbolic semantics as

tr = 〈(�0, D0)|{q0}〉
α
� . . .

α′

� 〈(�, D)|Q〉 such that qf ∈ Q (12)

We will use ω(tr) = α . . . α′ to denote the word of the trace tr, or just ω whenever
tr is clear from the context. In general, a single trace tr may cover several accepting
locations of the observer. We say that the trace ω covers n accepting observer states if
there are n accepting states inQ, and we use |Qf∩Q| to denote the number of accepting
states in Q.



Algorithm 1: Test generation for maximum coverage.

PASS:= ∅; MAX := 0; ωmax := ω0;1

WAIT:= {〈〈(�0, D0)|{q0}〉, ω0〉};2

while WAIT �= ∅ do3

select 〈〈(�,D)|Q〉, ω〉 from WAIT;4

if |Qf ∩Q| > MAX then5

ωmax := ω; MAX := |Qf ∩Q|;6

if for all 〈(�,D′)|Q′〉 in PASS: Q �⊆ Q′ or D �⊆ D′ then7

add 〈(�, D)|Q〉 to PASS;8

for all 〈(�′′, D′′)|Q′′〉 such that 〈(�, D)|Q〉 α

� 〈(�′′, D′′)|Q′′〉 do9

add 〈〈(�′′, D′′)|Q′′〉, ωα 〉 to WAIT;10

return ωmax and MAX;11

We are now ready to describe the test case generation algorithm [BHJP05]. We shall
restrict the presentation to an algorithm generating a single trace. The same technique
can be used to produce sets of traces to cover many coverage items. Alternatively, the
timed system model S can be annotated with edges that reset the system to its initial
state. A generated trace can then be interpreted as a set of test cases separated by the
reset edges [HLN+04].

An abstract algorithm to compute test case is shown in Algorithm 1. The algorithm
computes the maximum number of coverage items that can be visited (MAX), and re-
turns a trace with maximum coverage (ωmax). The two main data structures WAIT and
PASS are used to keep track of the states waiting to be explored, and the states already
explored, respectively.

Initially, the set of already explored states is empty and the only state waiting to be
explored is the extended state 〈〈(�0, D0)|{q0}〉, ω0〉, where ω0 is the empty trace. The
algorithm then repeatedly examines extended states from WAIT. If a state 〈(�, D)|Q〉
found in WAIT is included in a state 〈(�, D ′)|Q′〉 in PASS, then obviously 〈(�, D)|Q〉
does not need to be further examined. If not, all successor states that are reachable from
〈(�, D)|Q〉 in one computation step are put on WAIT, with their traces extended with
the action of the computation step from which they are generated. The state 〈(�, D)|Q〉
is saved in PASS. The algorithm terminates when WAIT is empty.

The variables ωmax and MAX are initially set to the empty trace and 0, respectively.
They are updated whenever an extended state is found in WAIT which covers a higher
number of coverage items than the current value of MAX. Throughout the execution
of the algorithm, the value of MAX is the maximum number of coverage items that
have been covered by a single trace, and ωmax is one such trace. When the algorithm
terminates, the two values MAX and ωmax are returned.

It has been shown in e.g. [LPY95] how to extract a concrete diagnostic trace from traces
generated by symbolic model-checkers for timed automata. The same technique can be
directly applied to extract concrete traces with Algorithm 1. Thus, we can compute
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traces like Equation 11 from traces like Equation 12 generated by the algorithm. The
results on soundness and completeness of symbolic model-checking for timed automata
also applies to Algorithm 1 since the number of possible elements in the sets Q is
guaranteed to be finite.

4.5 Tool Implementation

The concept of observers and the test case generation algorithm presented in this sec-
tion have been implemented in a version of the UPPAAL tool, called UPPAAL CO�ER 5

[HP04, HP06]. The current implementation uses bit-vector analysis techniques to rep-
resent and manipulate coverage, and supports an extended version of the observer lan-
guage described in this section [BHJP05]. For a given coverage criterion (a set of) test
cases can be generated from system specifications described as a network of UPPAAL

timed automata [HLN+04].

A typical setup in which UPPAAL CO�ER is used to test an IUT is shown in Figure 10.
The setup is divided in two parts, a test generation part for generating and transforming
test cases into XML-format, and a test execution part that executes the tests on the IUT
in a controlled environment.

The input to UPPAAL CO�ER is a model, an observer, and a configuration file. The
model is an UPPAAL timed automata network (.xml) with a system part and an envi-
ronment part. The observer (.obs) expresses the coverage criterion that steers the explo-
ration during test case generation. The configuration file (.cfg) describes the signals in
the timed automata network that should be considered as external, i.e. the interactions
between the system part and the environment part. The configuration file also specifies
the variables that should be passed as parameters in the input/ output signals.

The UPPAAL CO�ER tool produces a test suite consisting of a set of test cases (.xml) that
are timed traces where each input and output signal has a list of parameters with values

5 More information about UPPAAL CO�ER is available at the web site http://user.-
it.uu.se/˜hessel/CoVer/.



(according to the configuration file). An Executer interprets the test cases, executes
them, and returns a verdict for each test case.

UPPAAL CO�ER has been used in a large case study in collaboration with Ericsson,
in which model-based testing was applied to test a WAP gateway [HP06]. In the case
study, the session and transaction layers of the WAP protocol were modeled in detail
as UPPAAL timed automata, and observers were used to specify the coverage criteria
the test suites should satisfy. The UPPAAL CO�ER tool was applied to generate test
suites that were automatically translated into executable test scripts that revealed several
discrepancies between the model and the actual implementation.

The observer techniques presented in this section have also been implemented in a
tool operating on a subset of the functional language Erlang [ BJ03]. The tool has been
applied in a case study in collaboration with the Swedish tele communication company
Mobile Arts AB.

5 Online Testing

The previous section described offline test generation from timed automata specifica-
tions given test purposes or coverage criteria specified as observer automata or reach-
ability properties, but was limited to deterministic specifications. However, for many
real-time systems the ordering or timing of events cannot be known a priory, and hence
its behavior can not be appropriately captured by a deterministic model.

Moreover, as elaborated in Section 6.3, timed automata cannot be determinized, and
hence using determinization as intermediate step as is done by many untimed test gen-
erators is infeasible for timed automata, and other approaches are necessary. Here we
present online testing which is a promising approach. We present a real-time online
testing algorithm, its soundness, completeness and implementation.

5.1 Non-determinism and Time

In general non-determinism in specification is used as a means of abstraction. It may be
that the exact circumstances in the implementation that lead to different event orderings
or timings are not known or would require a model with too many details. It may also be
that the implementation internally exhibits non-determinism which cannot be observed
or controlled by the tester, e.g., the exact arrival order and timings of external interrupts.
A further typical use of non-determinism is to model optional behavior that is permitted,
but not required by all implementations.

Non-determinism plays a particular role in real-time systems because it is used to ex-
press timing uncertainty. A typical real-time requirement is that the IUT must deliver
an output within a given time bound, but as long as the deadline is satisfied, the IUT
conforms. In TIOTS, this is specified as a non-deterministic choice between letting time
pass and producing an output. In timed automata this is described syntactically by using



an invariant on a location with the outgoing edge producing the output (see e.g., loca-
tion l2 of Figure 5(a) where the compressor is required to switch on (and off) within r
time units.

Further, outputs from the IUT may be delayed by an unpredictable amount of time in
the communication software between the test host and IUT. Some timing tolerance on
most output actions is often required.

A non-deterministic model may reach/occupy several possible states after having ex-
ecuted an action, and as a consequence it may have different possible next behaviors.
This possible set of states represents the uncertainty the tester has about the exact state
of a (conforming) IUT, and the tester must be prepared to accept any legal next behavior
according to the state set.

l0

l1

l2

l3

l4

x>=7
a?

a?

a?
x=0

(a) S1

l5 l6
x=0

(b) S2

Fig. 11. Two non-deterministic timed automata.

Example 10. As examples, consider the simple compressor controller of Figure 5(a).
Upon receiving a medium temperature reading the controller may either stay off or
switch on the compressor, see Equation 6. Further consider the timed automata in Fig-
ure 11. The following equations list the states that can be reached after an observable
action and a delay. Note that in the second case even a single transition can result in
more (infinite with dense time) states. In this example it is not known when the clock x
is reset on the internal transition.

{〈l0, x = 3〉} After a = {〈l2, x = 3〉, 〈l4, x = 3〉, 〈l3, x = 0〉}

{〈l5, x = 0〉} After 4 = {〈l5, x = 4〉, 〈l6, 0 ≤ x ≤ 4〉}

Such non-deterministic timed specifications are algorithmically and computationally
more complex to analyze than their untimed counter parts because they require sym-
bolic manipulation of sets of infinite sets of states.



5.2 A Real-Time Online Testing Algorithm

The test specification input to Algorithm 2 consists of two weakly input enabled and
non-blocking TIOTSs S ‖ E respectively modeling the IUT and its environment. It
maintains the current reachable state set Z ⊆ S × E that the test specification can
possibly occupy after the timed trace σ observed so far. Knowing this state-set allows
it to choose appropriate inputs and to validate IUT outputs. Moreover, if the computed
state set becomes empty (S ‖ E After σ = ∅), the IUT has exhibited a timed trace not
in the test specification, and the IUTcannot be rtioco conforming, see Section 3. The
possible set of states is computed incrementally event by event.

Algorithm 2: Test generation and execution: TestGenExe(S, E , IUT, T ).
Z := {(s0, e0)}; // initialize the state set with initial state1

while Z �= ∅ ∧ �iterations ≤ T do2

switch between action, delay and restart randomly do3

case action: // offer an input4

if EnvOutput(Z) �= ∅ then5

randomly choose i ∈ EnvOutput(Z);6

send i to IUT,;7

Z := Z After i;8

case delay: // wait for an output9

randomly choose d ∈ Delays(Z);10

sleep for d time units or wake up on output o at d′ ≤ d;11

if o occurs then12

Z := Z After d′;13

if o /∈ ImpOutput(Z) then return fail ;14

else Z := Z After o15

else Z := Z After d; // no output within d delay16

case restart: Z := {(s0, e0)}; reset IUT; // reset and restart17

if Z = ∅ then return fail else return pass;18

The tester can perform three basic actions: either send an input (enabled environment
output) to the IUT, wait for an output for some time, or reset the IUT and restart. If the
tester observes an output or a time delay it checks whether this is legal according to the
state set. The state set is updated whenever an input is given, or an output or a delay is
observed.

Illegal occurrence or absence of an output is detected if the state set becomes empty
which is the result if the observed trace is not in the specification. The functions used
in Algorithm 2 are defined as: EnvOutput(Z) = {a ∈ Ain | ∃(s, e) ∈ Z.e

a−→},
ImpOutput(Z) = {a ∈ Aout | ∃(s, e) ∈ Z.s

a−→}, and Delays(Z) = {d | ∃(s, e) ∈



Z.e
d⇒} 6. Note that EnvOutput is empty if the environment has no outputs to offer.

Similarly, the Delays function cannot pick at random from the entire domain of real-
numbers if the environment must produce an input to the IUT model before a certain
moment in time.

5.3 Soundness and Completeness

Algorithm 2 constitutes a randomized algorithm for providing stimuli to (in terms of in-
put and delays) and observing resulting reactions from (in terms of output) a given IUT.
Under a testing hypothesis about the behavior of the IUT and given that the TIOTSs S
and E satisfy the below given assumptions, the randomization used in Algorithm 2 may
be chosen such that the algorithm is both complete and sound in the sense that it (even-
tually with probability one) gives the verdict “fail” in all cases of non-conformance and
the verdict “pass” in cases of conformance.

The hypothesis is based on the results on digitization techniques in [T.A92]7 which
allow the dense-time trace inclusion problem between two sets of timed traces to be
reduced to discrete time. In particular it suffices to choose unit delays in Algorithm 2
(assuming that the models and the IUT share the same magnitude of a time unit).

Moreover, if the behavior of the IUT is a non-blocking, input enabled, deterministic
TIOTS with isolated outputs the reaction to any given timed input trace σ = d 1i1 . . . dkikdi+1

is completely deterministic. More precisely, given the stimuli σ there is a unique ρ ∈
TTr(IUT) such that ρ ↑ Ain = σ, where ρ ↑ Ain is the natural projection of the timed
trace ρ to the set of input actions. If the IUT is allowed to be non-deterministic it cannot
be guarenteed that all its behavior have been revealed.

Theorem 1. Assume that the behavior of IUT may be modeled8 as a weakly input en-
abled, non-blocking, deterministic TIOTS with isolated outputs, TTr(IUT) and TTr(E)
are closed under digitization and that TTr(S) is closed under inverse digitization. Then
Algorithm 2 with only unit delays is sound and complete in the following senses:

1. Whenever TestGenExe(S, E , IUT, T ) = fail then IUT rtiocoE S.

2. Whenever IUT rtiocoE S then Prob
(
TestGenExe(S, E , IUT, T ) = fail

) T→∞−−−−→ 1
where T is the maximum number of iterations of the while-loop before exiting.

Proof. The proof can be found in [LMN04].

6 According to the definition of rtiocoe given in Section 3, all environment traces and delays
must be considered, not only the delays that can occur in the parallel composition of S and
E ; in a parallel composition a delay is only permitted if both components agree. Therefore
Delays(Z) extracts the possible delays from the environment component e of the system state
(s,e) to ensure that the algorithm will try to wait beyond the specified deadlines before supply-
ing a new input.

7 We refer the reader to [T.A92] for the precise definition of digitization and inverse digitization.
8 The assumption that the IUT can be modeled by a formal object in a given class is commonly

referred to as the test hypothesis. Only its existence is assumed, not a known instance.



From [T.A92, J. 03] it follows that the closure properties required in Theorem 1 are
satisfied if the behavior of the IUT and the E are TIOTSs induced by closed timed
automata (i.e. where all guards and invariants are non-strict) and S is a TIOTS induced
by an open timed automaton (i.e. with guards and invariants being strict). In practice
these requirements are not restrictive, e.g. for strict guards one can always scale the
clock constants to obtain arbitrary high precision.

5.4 Tool Implementation

The online testing algorithm Algorithm 2 is implemented in a tool named UPPAAL-
TRON [LMN04]: UPPAAL extended for Testing Real-time systems ONline. It imple-
ments the setup shown in Figure 12.

We assume that the IUT is a black-box whose state is not directly observable, i.e.,
only physical input and output actions are observable. The adapter is an IUT specific
hardware/software component that connects the IUT to TRON and is responsible for
translating abstract input “in” test events into physical stimuli and physical IUT output
observations into abstract model outputs “out”. All events are time-stamped at testing
tool side, meaning that the adapter model should be included as part of implementation
specification. TRON engine loads the test specification which is a network of timed
automata partitioned into models of the environment and the IUT. The goal of TRON is
to emulate and replace the environment of the IUT: stimulate the IUT with input that is
deemed relevant by the environment part of the model, based on the timed sequence of
input and output actions performed so far.
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Fig. 12. TRON test setup.

Because TRON executes on platforms whose execution cannot be entirely predicted
and controlled (e.g. due to operating system scheduling and tool analysis performance
issues), Algorithm 2 is implemented in such a way that TRON checks the validity of
output with timing and also the actual timing of input execution. TRON provides an
application programming interface to enable programming of adapters, and provides
the means for loading this as a dynamically linked library.



Internally, TRON uses matured efficient timed automata symbolic reachability algo-
rithm from UPPAAL [BBD+02] to compute the symbolic state set which means that
the model semantics is preserved and analysis is efficient for online testing. Thus, to
compute the operator After the online testing algorithm manipulates sets of symbolic
states (�, D), see Section 2.3, and is constructed such that it terminates even if the model
contains τ action loops. Further information about the implementation of the required
symbolic operations can be found in [LMN04].

To evaluate online testing we have created a number of small academic specifications
and implementation (and mutants thereof). The results regarding both performance and
error detection capability are promising. More details can be found in [ LMN04]. We
have also evaluated online testing on an industrial case [MLNS05], an electronic re-
frigeration controller provided by the Danish manufacturer Danfoss A/S. Besides tem-
perature based compressor regulation it has numerous features for handling alarms and
defrosting cycles, etc.

We found that real-time online testing is an effective means of detecting discrepan-
cies between the model and the implementation in practice. It also appears feasible
performance-wise for such realistic models.

However, large and very non-deterministic models can run into a state explosion mak-
ing it problematic to update the state-set in real-time which may limit the granularity
of time constraints that can be checked in real-time. In a typical test run in the Danfoss
case, the state-set varied typically between a few symbolic states and a few hundred
symbolic states. Exploring these is unproblematic for the modern model-checking en-
gine employed by TRON. Updating even medium sized state-sets with around a 100
states requires only a few milli-seconds of CPU-time on a modern PC. The largest en-
countered state-sets (around 3000 states) were very infrequent, and required around 300
milli-seconds.

Real-time online testing thus appears feasible for a large range of embedded systems.

5.5 Testing = Environment Emulation + Implementation Monitoring

On closer inspection it turns out that online testing consists of two logically different
functions, namely environment emulation and IUT monitoring:

Environment Emulation: An environment emulator (completely or partly) replaces
the real environment of the IUT, and stimulates the IUT with new inputs based on
the history of previous inputs and observed outputs. An environment emulator thus
executes online in real-time and actively stimulates the IUT, but does not assign
verdicts to the observed trace.

IUT Monitoring: A monitor passively observes the timed input/output sequence pro-
duced between the IUTand its real-environment, and determines whether this be-
havior is (relativized input/output) conforming to the specification. Hence, the mon-
itor functions as a test oracle. Monitoring is also sometimes called passive testing.



The monitor can be executed in three different ways. It may run real-time online in
which case non-conformance is reported immediately. This requires that the moni-
tor has sufficient computational resources to analyze the model at the pace dictated
by the IUT. Alternatively the monitor may be executed online, but at its own pace
(virtual time). Events that are unprocessed are buffered until the monitor becomes
ready. Non-conformance will be reported while the IUTis running, but typically
some time after it has occurred. Finally, the monitor can be executed offline (post-
mortem) on a collected (finite) trace.

Until now we have presented our framework, test-generation and execution algorithm,
and TRON as a tool that performs environment emulation and online real-time moni-
toring as an integrated program.

However, in some situations it is beneficial to separate the two functions in different
parts/tools. For example, the two functions can be performed by dedicated tools spe-
cialized for the particular function or executed on dedicated platforms (e.g., a hard real-
time operating system/computer for environment emulation and a fast (soft-real-time)
number-crunching computer for monitoring). Another example is performance. It may
not be possible to evaluate a large detailed model of the IUT online in real-time (models
of the IUT tends to be larger and much more detailed than the environment model). With
a separate monitoring function this can be done afterwards or on a separate dedicated
computer.

The explicit separation of the test specification into an environment part and an IUT part
allows TRON to be configured easily to perform both pure emulation and monitoring
as described in the following.

We denote the behavioral model of the IUT with input actions A in and output actions
Aout by S(Ain , Aout). Similarly, we denote the environment by E(Aout , Ain). Also
let U(Ain , Aout) and O(Ain , Aout ) denote respectively the most (universal) and least
(passive) discriminating and least discriminating timed automata, see Section 3. The
universal timed automaton is capable of performing any trace. The passive timed au-
tomata silently consume input actions.

To use TRON for pure environment emulator use the intended environment model
E(Aout , Ain) and replace the IUT-model S(Ain , Aout ) by U(Ain , Aout). In conse-
quence TRON will produce timed traces only in E(Aout , Ain). Non-conformance will
never be reported because U(Ain , Aout ) allows any timed trace. This configuration is
depicted in Figure 13(a).

Similarly, pure monitoring can be achieved using a slightly modified IUT-model S ′ =
S(∅, Ain∪Aout ) where all input actions are changed to output actions, see Figure 13(b).
This model contains the same traces (ignoring i/o labeling) as the original. The envi-
ronment model must be completely passive and not contain any inputs (as seen from
the IUT point of view), O′ = O(Ain ∪ Aout , ∅). Thus, with no essential modification
to TRON or Algorithm 2 the monitoring can be executed in simulated time or offline.
If the monitor is uncertain about the state of the IUT when started, Algorithm 2 can be
started with a different (over-approximated) state-set instead of the initial state.
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Finally, we observe that online testing can be obtained by running two instances of
TRON, one performing monitoring and the other environment emulation, see Figure 14.
The two instances may possibly run on different computers.
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Fig. 14. Model-based Testing via Combined Environment Emulation and Monitoring

6 Discussion and Future Work

Model-based test generation for real-time specifications has been investigated by oth-
ers (see e.g., [PAD+98, MMM95, BFM97, HNTC99, ENDKE98, CO00, SVD01, NS01,
KJM03, HLN+04, M. 04]), but remain relatively immature. In this section we discuss
our approach to timed testing and compare to important related work. Also we mention
topics for future work in the area.

6.1 Conformance relations

The choice of conformance relation is important for both theoretical and practical rea-
sons, yet there is still no wide spread consensus in the community about its definition.



Our relativized timed input/output conformance relation is a timed and environment-
relativized extension of a solid and widespread implementation relation used in model
based conformance testing of untimed systems, namely the input/output conformance
relation by Tretmans [Tre99]. Informally, input/output conformance requires for all
specification traces that the implementation never produces an output not allowed by
the specification, and that it never refuses to produce an output (forever stays quies-
cent) when the specification requires one. As also noted in [KJM03,M. 04] a timed in-
put/output conformance relation can be obtained (assuming input enabledness) as timed
trace inclusion between the implementation and its specification.

A fundamental question is how quantitative properties like real-time can be observed of
the physical IUT. E.g., can event occurrences be observed at time points or only within
error bounds, and should such fundamental physical uncertainties be an explicit part of
the theory? Similarly, does a concept like quiescence make sense in a real-time system,
or are only time bounded (finite time) observations possible? New alternative timed
implementation relations have been formulated by Briones and Brinksma in [ BB04].

Another question is related to the goal of real-time testing. Timed trace inclusion does
not allow the implementation to be faster than the specification. In some cases this
may be unsafe. However, in many other cases it seems natural that the implementation
should be allowed to be as fast as possible. Therefore faster-than type relations have
been proposed [CZ91, NR05]. Thus there seem to be a unclear cut boundary between
real-time correctness testing and performance testing.

6.2 Specification of Tests

The test cases to be executed on the IUT can be selected by different means. Typical ap-
proaches are test purposes, model-coverage criteria, fault-models (see e.g., [ HNTC99,
ENDKE98]) , or randomly.

Test purposes are specific observation objectives formulated by the test engineer, see
e.g. [FJJV97,RdBJ00]. Another popular approach is to cover the model in the hope that
a covering test suite is also thorough. Further, model coverage is an important measure
for estimating the confidence the developers can have in the executed tests.

In typical approaches, the selection of test cases follows some particular coverage cri-
terion, such as coverage of control states, edges, etc. For finite-state machines several
approaches focus on particular coverage criteria, e.g., Bouquet and Legeard [ BL03] syn-
thesize test cases corresponding to combinations of choices of control flow and bound-
ary values of state variables. Nielsen and Skou [NS03] generate test cases from timed
automata that cover different time-domains represented as reachable symbolic states.

Since different coverage criteria are suitable in different situations, and satisfy different
constraints on fault detection capability, cost, information about where potential faults
may be located, etc., it is highly desirable that a test generation tool is able to generate
test suites in a flexible manner, for a wide variety of different coverage criteria. In other
words, a test generation tool should accept a simple specification of a coverage criterion,
given in a language that can easily specify a large set of coverage criteria, and be able



to generate test suites accordingly. Hong et al [HLSU02a,HCL+03] describe how flow-
based coverage criteria can be expressed in temporal logic. Friedman et al [ FHNS02]
specifies coverage by giving a set of projections of the state space (e.g., on individual
state variables, components of control flow) that should be covered, possibly under
some restrictions.

The observer approach described in this chapter generalizes these approaches and pro-
vides such a flexible language. Test purposes can in some sense be regarded as coverage
observers, but are not used to specify more generic coverage criteria and do not make
use of parameterization, as we do.

Where offline test generation uses symbolic and constraint solving algorithms to sat-
isfy a coverage criterion, online test generators typically uses cheap randomized choice
techniques, and can thus not guarantee satisfaction of the coverage criteria, or only pro-
vide a probabilistic guarantee provided (unrealistic) long execution time. The achieved
coverage of an online testing session can easily be evaluated post-mortem by comparing
the collected timed trace with the model. This can for instance be done by executing the
timed trace on the model suitably extended with auxiliary coverage or meta-variables,
as described in Section 4.2. Another approach is to dynamically collect coverage in-
formation during the test run and use this to guide (reduce the random choices) toward
uncovered parts of the model.

Except for the obvious extensions of untimed coverage criteria, there exists very little
research [NS03,CL95] that deals explicitly with real-time coverage criteria, i.e., criteria
that tries to cover the time domain and timer/clock values of a timed specification.
Future work includes formulating such real-time coverage criteria and extending the
observer approach to allow easy specification of these.

6.3 Test Generation Algorithms

Many model-checker based test generators that generate tests from a coverage criterion
invoke the model checker for each coverage item resulting in a single test case per
coverage item, see e.g., [HRV+03]. This not only results in many test cases and a large
test generation overhead, but also a large test execution overhead because many sub-
sequences will be identical. It may be more efficient to cover several items by the same
test, and generate a test suite that covers the model as much as possible, as our algorithm
in Section 4.4. However, this requires that the model checker is extended with dedicated
search and pruning algorithms and efficient bit vector encodings of the coverage criteria.
We also expect such efficient encodings to play an important role in monitoring and
guiding the online test generator toward a coverage goal.

Moreover, whereas most other work on optimizing test suites, e.g. [ ADLUU91,UUFSA99,
HLSU02b], focus on minimizing the length of the test suite, our technique may also re-
duce the actual execution time, because it considers that some events take longer to
produce or and take real-time constraints into account. It may even produce the time
optimal test sequences.



Most offline algorithms explicitly determinize the specification [CH93, JM99, NS01]
as an intermediate step. However, for expressive formalisms like TA this approach is
problematic because in general they cannot be determinized.

It is well-known that from the theory of timed automata that non-deterministic timed
automata (unlike finite automata) cannot be determinized to a language equivalent de-
terministic timed automata [AD94]. It is also not in general possible to remove internal
transitions from a timed automata (and when they can, it may be very costly) [ V. 97].
Much work on timed test generation from TA therefore restrict the amount and type
of allowed non-determinism: [SVD01,ENDKE98,HLN+04] completely disallow non-
determinism, [KJM03, NS01] restrict the use of clocks, guards or clock resets. This
gives a less expressive and less flexible specification language. In contrast, online test-
ing is automatically adaptive and only implicitly determinizes the specification, and
only partially up to the concrete trace observed so far.

Our approach to online testing is inspired by the (untimed) algorithm proposed by Tret-
mans et. al. in [VT00, BFV+99]. They have implemented online testing from Promela
[VT00] and LOTOS specifications in the TORX [VTB+00] tool, and practical appli-
cation to real case studies show promising results [TB99, VTB+00, BFV+99]. How-
ever, TORX provides no support for real-time. Similarly to Krichen and Tripakis [ S. 02,
M. 04] we use symbolic reachability computation algorithms to track the current state-
set for timed automata with unrestricted non-determinism. We extend the UPPAAL

model-checker resulting in an integrated and mature testing and verification tool.

It seems likely that a combination of the strengths of offline and online testing will re-
quire the notion of games. In a two-player game one player is trying to reach a winning
state by performing controllable game-moves while being affected by uncontrollable
moves by the opponent. Translated into testing this corresponds to the situation where
the tester is trying reach a state where the test purpose (or coverage criterion) is satis-
fied by giving controllable inputs to the IUT (the opponent) that responds by making
uncontrollable and unpredictable output actions. The goal of the test generator is to
compute a winning strategy that will partly be computed statically and partly be in-
terpreted and computed dynamically. Although promising work is in progress on such
timed games [BCFL04] the required concepts are not sufficiently well developed yet.

The UPPAAL framework is perfectly suited for exploring timed properties of the model,
but there is little effort done toward combining it with more complicated test data gen-
eration. The recent release of UPPAAL supports C-like data declarations which would
enable to combine and implement ideas from [KATP02].

6.4 Real-time Test Execution and Diagnostics

The execution of real-time test cases is also a challenge, both for online and offline
generated tests, because the test execution system is a real-time system with deadlines
and potential narrow tolerances. There are two main problems. One is that the host plat-
form may cause unpredictable real-time performance of the tester because of scheduling
latency, competing processes, i/o activity and disturbances from competing processes.



The other is that there is communication media between the tester and the IUT that must
be factored into the test generation or execution. It introduces latency and uncertainty
on the order and timing of observations. These problems are not only technical engi-
neering problems, but also seem to require clarification at a semantic and theoretical
level.

When non-conformance has been detected the next step is to diagnose why the run
failed. It may be an error in the specification, the adaptor layer, or the implementation.
If the error is in the implementation the exact cause has to be found and corrected, and
regression testing must be performed.

For online testers these issues are especially problematic, because test sequences are
typically very long and randomly generated, and hence are difficult to diagnose and
reproduce for regression testing. The current TRON implementation assumes that the
fault appears in the last testing step and gives a hint about what output was expected
and when, and prints information about the last known non-empty state-set. While very
helpful, it does not necessarily indicate the cause of the fault, which may have been
caused by an internal fault executed by the IUT much earlier. Also TRON allows a
recorded timed trace to be replayed against the implementation. However, doing so for
long traces with narrow timing tolerances is technically very challenging.

In the future we plan to combine coverage facts with information about passed and
failed test runs, in the hope that difference in coverage (of the model or code) could help
locate the cause of the error, an approach inspired by the concept of delta-debugging
[ZH02].

7 Conclusions

In this chapter we reviewed progress on formal model-based testing of real-time sys-
tems. We presented a testing framework consisting of a formal, timed specification
language, timed automata, and a formal real-time correctness relation, relativized in-
put/output conformance. We conclude that this framework is solid, technically sound
and works well in practice. Based on this common framework we demonstrated two
extreme approaches to timed test generation. In offline (optimal) satisfaction of test pur-
pose or coverage criterion is the aim, while online testing ensures thoroughness through
volume and brute-force.

These approaches are implemented by (substantially) extending the efficient algorithms
and data structures from the UPPAAL model-checker. We find such a mature tool and
efficient machinery important for the practical use of the test generation techniques.

Overall, we conclude that significant progress has been made in the area of timed test-
ing, but also that many exciting and important challenges remain. These range from
technical engineering problems to principal semantic (and perhaps philosophical) ones.
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FJJV97. J.-C. Fernandez, C. Jard, T. Jéron, and C. Viho. An experiment in automatic gener-
ation of test suites for protocols with verification technology. Science of Computer
Programming, 29, 1997.

HCL+03. H.S. Hong, S.D. Cha, I. Lee, O. Sokolsky, and H. Ural. Data flow testing as model
checking. In ICSE’03: 25th Int. Conf. on Software Enginering, pages 232–242, May
2003.

Her76. P.M. Herman. A data flow analysis approach to program testing. Australian Com-
puter J., 8(3), 1976.

HLN+04. A. Hessel, K. G. Larsen, B. Nielsen, P. Pettersson, and A. Skou. Time-Optimal
Real-Time Test Case Generation using UPPAAL. In A. Petrenko and A. Ulrich,
editors, Proc. 3rd International Workshop on Formal Approaches to Testing of Soft-
ware 2003 (FATES’03), volume 2931 of Lecture Notes in Computer Science, pages
136–151. Springer–Verlag, 2004.

HLSU02a. H.S. Hong, I. Lee, O. Sokolsky, and H. Ural. A temporal logic based theory of test
coverage. In J.-P. Katoen and P. Stevens, editors, Proc. TACAS ’02, 8th Int. Conf. on
Tools and Algorithms for the Construction and Analysis of Systems, volume 2280 of
Lecture Notes in Computer Science, pages 327–341. Springer Verlag, 2002.



HLSU02b. Hyoung Seok Hong, Insup Lee, Oleg Sokolsky, and Hasan Ural. A Temporal Logic
Based Theory of Test Coverage and Generation. In J.-P. Katoen and P. Stevens,
editors, TACAS 2002, pages 327–341. Kluwer Academic Publishers, April 2002.

HNTC99. Teruo Higashino, Akio Nakata, Kenichi Taniguchi, and Ana R. Cavalli. Generating
Test Cases for a Timed I/O Automaton Model. In Gyula Csopaki, Sarolta Dibuz,
and Katalin Tarnay, editors, Testing of Communicating Systems: Method and Appli-

cations, IFIP TC6 12th International Workshop on Testing Communicating Systems
(IWTCS), September 1-3, 1999, Budapest, Hungary, volume 147 of IFIP Conference
Proceedings, pages 197–214. Kluwer, 1999.

HP04. A. Hessel and P. Pettersson. A test generation algorithm for real-time systems. In
H-D. Ehrich and K-D. Schewe, editors, Proc. of 4th Int. Conf. on Quality Software,
pages 268–273. IEEE Computer Society Press, September 2004.

HP06. A. Hessel and P. Pettersson. Model-Based Testing of a WAP Gateway: an Industrial
Study. In L. Brim and M. Leucker, editors, Proc. 11rd International Workshop
on Formal Methods for Industrial Critical Systems (FMICS’06), Lecture Notes in
Computer Science. Springer–Verlag, 2006.

HRV+03. Mats P.E. Heimdahl, Sanjai Rayadurgam, Willem Visser, George Devaraj, and Jimin
Gao. Auto-generating Test Sequences Usiong Model Checkers: A Case Study.
In Alexandre Petrenko and Andreas Ulrich, editors, 3rd International Workshop
on Formal Approaches To Testing Of Software (FATES 2003), Montréal, Québec,
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KJM03. A. Khoumsi, T. Jéron, and H. Marchand. Test cases generation for nondeterministic
real-time systems. In 3rd International Workshop on Formal Approaches to Testing
of Software (FATES’03). LNCS 2931, Montreal, Canada, 2003.

LBB+01. Kim G. Larsen, Gerd Behrmann, Ed Brinksma, Ansgar Fehnker, Thomas Hune, Paul
Pettersson, and Judi Romijn. As cheap as possible: Efficient cost-optimal reachabil-
ity for priced timed automat. In G. Berry, H. Comon, and A. Finkel, editors, Proc.
of CAV 2001, number 2102 in Lecture Notes in Computer Science, pages 493–505.
Springer–Verlag, 2001.

LK83. J. W. Laski and B. Korel. A data flow oriented program testing strategy. IEEE Trans.
on Software Engineering, SE-9(3):347–354, May 1983.

LMN04. Kim Larsen, Marius Mikucionis, and Brian Nielsen. Online Testing of Real-time
Systems using Uppaal. In Jens Grabowski and Brian Nielsen, editors, International
workshop on Formal Approaches to Testing of Software, Co-located with IEEE Con-
ference on Automates Software Engineering 2004, Linz, Austria., September 2004.

LPY95. Kim G. Larsen, Paul Pettersson, and Wang Yi. Diagnostic Model-Checking for
Real-Time Systems. In Proc. of Workshop on Verification and Control of Hybrid



Systems III, number 1066 in Lecture Notes in Computer Science, pages 575–586.
Springer–Verlag, October 1995.

M. 04. M. Krichen and S. Tripakis. Black-box Conformance Testing for Real-Time Sys-
tems. In Model Checking Software: 11th International SPIN Workshop, volume
LNCS 2989. Springer, April 2004.

MLNS05. Marius Mikucionis, Kim G. Larsen, Brian Nielsen, and Arne Skou. Testing rea-
time embedded software using uppaal-tron —an industrial case study. In Embedded
Software (EMSOFT), New Jersey, USA., September 2005.

MMM95. Dino Mandrioli, Sandro Morasca, and Angelo Morzenti. Generating Test Cases for
Real-Time Systems from Logic Specifications. ACM Transactions on Computer
Systems, 13(4):365–398, 1995.

Mye79. G. Myers. The Art of Software Testing. Wiley-Interscience, 1979.
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